
Sparkfun	inventor'	s	kit	sik	guide

http://ydeepty.com/c3?utm_term=sparkfun+inventor%27+s+kit+sik+guide

Sparkfun	inventor's	kit	code.	Sparkfun	inventor's	kit	guide.

about	6	months	ago	by	Member	#1722496	verified	purchaser	So,	here's	what	I	have	to	compare	this	kit	to:	The	Make:	Electronics	kit,	which	unfortunately	took	a	very	long	time	to	get	to	me,	coloring	my	perception	of	their	kit,	plus?	They	didn't	manage	to	get	the	book	I'm	SURE	I	ordered	with	the	kit,	to	me,	in	addition	to	the	shipping	delay.	Now,	the
delay	wasn't	their	fault,	they	say	Covid-19	shut	down	their	warehouse.	Why	am	I	mentioning	all	of	this?	Because	I'm	brand	new	to	electronics,	and	kits	like	this,	except	for	some	Radio	Shack	boxed	kits	using	springs	to	connect	circuits,	and	so	having	the	BOOK	is	a	big	deal	for	me,	because	I	like	having	the	book,	and	yeah,	yeah,	I	can	and	do	go	online,

but	this	kit	from	Spark	Fun?	GREAT	BOOK!	And	it's	spiral	bound,	so	it	lays	flat	while	I	try	to	follow	along.	I	like	the	code,	and	the	whole	thing	has	been	working	flawlessly	so	far:	I'm	halfway	through	the	book.	:)	Any	problems	I've	had	have	been	user	error,	and	I'm	really	enjoying	the	projects	and	the	quality	of	the	included	components.	Contributors:
HelloTechie,	Toni_K	Favorited	Favorite	6	The	SparkFun	Inventor's	Kit	is	your	map	for	navigating	the	waters	of	beginning	embedded	electronics.	This	kit	contains	all	the	information	and	parts	you	will	need	to	create	16	circuits	that	cover	the	basics	of	programming	and	hardware	interactions.	At	the	center	of	this	kit	is	one	core	philosophy	--	that	anyone
can	(and	should)	experiment	with	electronics.	When	you're	done	with	this	guide,	you'll	have	the	know-how	to	start	creating	your	own	projects	and	experiments.	This	guide	is	also	available	as	a	downloadable	PDF,	if	you	prefer.	SparkFun	Inventor's	Kit	-	V3.3	You	should	have	one	of	the	two	following	versions	of	the	SIK.	If	you	need	a	overview	of	the
parts	included	in	your	kit,	please	click	on	the	product	link	below.	KIT-14189	The	SparkFun	Inventor's	Kit	(SIK)	is	a	great	way	to	get	started	with	programming	and	hardware	interaction	with	the	Arduino	pr…	5	Retired	Favorited	Favorite	7	KIT-13970	The	SparkFun	Inventor's	Kit	(SIK)	is	a	great	way	to	get	started	with	programming	and	hardware
interaction	with	the	Arduino	pr…	2	Retired	Favorited	Favorite	6	The	primary	difference	between	the	two	kits	is	the	microcontroller	included	in	the	kit.	The	SparkFun	Inventor's	Kit	includes	a	SparkFun	RedBoard,	while	the	SparkFun	Inventor's	Kit	for	Arduino	Uno	includes	an	Arduino	Uno	R3.	At	the	heart	of	each	is	the	ATmega328p	microcontroller,
giving	both	the	same	functionality	underneath	the	hood.	Both	development	boards	are	capable	of	taking	inputs	(such	as	the	push	of	a	button	or	a	reading	from	a	light	sensor)	and	interpreting	that	information	to	control	various	outputs	(like	a	blinking	LED	light	or	an	electric	motor).	And	much,	much	more!	Note:	The	Arduino	Uno	version	of	the	kit	does
not	include	a	carrying	case	or	printed	copy	of	this	manual	to	decrease	weight	and	cost	for	international	shipping.	Note:	You	can	complete	all	16	experiments	in	this	guide	with	either	kit.	If	you	need	more	information	to	determine	which	microcontroller	is	right	for	you,	please	check	out	the	following	tutorials.	How	to	get	your	RedBoard	up-and-blinking!
Favorited	Favorite	5	What	is	this	'Arduino'	thing	anyway?	This	tutorials	dives	into	what	an	Arduino	is	and	along	with	Arduino	projects	and	widgets.	Favorited	Favorite	46	Open	Source!	At	SparkFun,	our	engineers	and	educators	have	been	improving	this	kit	and	coming	up	with	new	experiments	for	a	long	time	now.	We	would	like	to	give	attribution	to
Oomlout,	since	we	originally	started	working	off	their	Arduino	Kit	material	many	years	ago.	The	Oomlut	version	is	licensed	under	the	Creative	Commons	Attribution	Share-Alike	3.0	Unported	License.	SparkFun's	version	3.3	is	licensed	under	the	Creative	Commons	Attribution	Share-Alike	International	License.	Suggested	Reading	Before	continuing	on
with	this	tutorial,	we	recommend	you	be	familiar	with	the	concepts	in	the	following	tutorials:	Every	electrical	project	starts	with	a	circuit.	Don't	know	what	a	circuit	is?	We're	here	to	help.	Favorited	Favorite	73	Welcome	to	the	wonderful	world	of	breadboards.	Here	we	will	learn	what	a	breadboard	is	and	how	to	use	one	to	build	your	very	first	circuit.
Favorited	Favorite	73	We	can	see	electricity	in	action	on	our	computers,	lighting	our	houses,	as	lightning	strikes	in	thunderstorms,	but	what	is	it?	This	is	not	an	easy	question,	but	this	tutorial	will	shed	some	light	on	it!	Favorited	Favorite	76	An	introduction	to	polarity	in	electronic	components.	Discover	what	polarity	is,	which	parts	have	it,	and	how	to
identify	it.	Favorited	Favorite	49	Contributors:	Joel_E_B,	bboyho	Favorited	Favorite	10	The	following	steps	are	a	basic	overview	of	getting	started	with	the	Arduino	IDE.	For	more	detailed,	step-by-step	instructions	for	setting	up	the	Arduino	IDE	on	your	computer,	please	check	out	the	following	tutorial.	A	step-by-step	guide	to	installing	and	testing	the
Arduino	software	on	Windows,	Mac,	and	Linux.	Favorited	Favorite	16	In	order	to	get	your	microcontroller	up	and	running,	you'll	need	to	download	the	newest	version	of	the	Arduino	software	first	(it's	free	and	open	source!).	This	software,	known	as	the	Arduino	IDE,	will	allow	you	to	program	the	board	to	do	exactly	what	you	want.	It’s	like	a	word
processor	for	writing	code.	Download	Arduino	Example	Code	You	are	so	close	to	to	being	done	with	setup!	Download	the	SIK	Guide	Code.	You	can	also	download	the	code	from	GitHub	or	click	the	following	link	to	download	the	code:	Place	the	SIK-Guide-Code-master	folder	in	the	Arduino	IDE	examples	directory:	Windows:	drag	the	SIK-Guide-Code-
master	folder	into	C:\Program	Files\Arduino-x\examples.	Note:	For	those	that	automatically	installed	the	Arduino	IDE	on	a	Windows	64-bit	computer,	the	Arduino	program	folder	may	be	located	in	the	"C:\Program	Files	(x86)..."	folder.	MacOS:	Right-click	on	the	Arduino	IDE	app	and	click	"Show	Package	Contents...".	Drag	the	SIK-Guide-Code-master
folder	into	Contents/Java/examples.	Note:	For	those	using	an	older	Arduino	IDE	versions	(e.g.	around	v1.6.1),	the	path	to	include	the	examples	was	previously	Contents/Resources/Java.	Linux:	see	Start	the	Arduino	IDE;	the	examples	should	be	visible	in	this	menu.	Depending	on	how	the	folder	is	named,	it	should	look	similar	to:	File	>	Examples	>	SIK
Guide	Code.	Contributors:	Joel_E_B,	bboyho	Favorited	Favorite	10	Please	note	that	this	tutorial	is	for	the	SparkFun	Inventor's	Kit	version	4.1	If	you	have	SIK	v3.3	or	are	using	parts	from	the	add-on	pack,	please	refer	to	this	tutorial.	The	SparkFun	Inventor's	Kit	(SIK)	is	your	map	for	navigating	the	waters	of	beginning	embedded	electronics.	This	guide
contains	all	the	information	you	will	need	to	build	five	projects	encompassing	the	16	circuits	of	the	SIK.	At	the	center	of	this	guide	is	one	core	philosophy:	that	anyone	can	(and	should)	play	around	with	electronics.	When	you’re	done	with	this	guide,	you	will	have	built	five	projects	and	acquired	the	know-how	to	create	countless	more.	Now	enough	talk
—	let’s	start	something!	The	print	version	of	this	guide	is	available	as	a	PDF	as	well.	You	can	view	it	online	as	a	flipbook	or	download	it	to	your	computer.	To	download,	click	the	following	link	below.	Keep	in	mind	that	the	original	file	size	used	for	the	printed	guidebook	was	reduced	for	the	web.	While	the	file	size	was	reduced,	it	is	still	about	a	31.8MB
download.	Choosing	a	Kit	You	should	have	one	of	the	two	following	versions	of	the	SIK.	If	you	need	a	overview	of	the	parts	included	in	your	kit,	please	click	on	the	product	link	below.	KIT-15267	The	fourth	edition	of	our	popular	SIK,	fully	reworked	from	the	ground	up	for	a	better	learning	experience!	V4.1	now	has	the	a…	11	Favorited	Favorite	41	KIT-
15631	The	4th	edition	of	our	popular	SIK	for	Arduino	Uno,	reworked	to	v4.1	for	a	better	learning	experience!	Perfect	for	internatio…	1	Favorited	Favorite	10	Video	too	small?	Click	on	the	bottom	right	of	the	video	to	view	in	full	screen.	The	primary	difference	between	the	two	kits	is	the	microcontroller	included	in	the	kit.	The	SparkFun	Inventor's	Kit
includes	a	SparkFun	RedBoard	Qwiic.	At	the	heart	of	each	is	the	ATmega328p	microcontroller,	giving	both	the	same	functionality	underneath	the	hood.	Both	development	boards	are	capable	of	taking	inputs	(such	as	the	push	of	a	button	or	a	reading	from	a	light	sensor)	and	interpreting	that	information	to	control	various	outputs	(like	a	blinking	LED
light	or	an	electric	motor).	And	much,	much	more!	Note:	The	Arduino	Uno	version	of	the	kit	does	not	include	a	carrying	case	or	printed	copy	of	this	manual	to	decrease	weight	and	cost	for	international	shipping.	Note:	You	can	complete	all	16	experiments	in	this	guide	with	either	kit.	If	you	need	more	information	to	determine	which	microcontroller	is
right	for	you,	please	check	out	the	following	tutorials.	What	is	this	'Arduino'	thing	anyway?	This	tutorials	dives	into	what	an	Arduino	is	and	along	with	Arduino	projects	and	widgets.	Favorited	Favorite	46	This	tutorial	covers	the	basic	functionality	of	the	RedBoard	Qwiic.	This	tutorial	also	covers	how	to	get	started	blinking	an	LED	and	using	the	Qwiic
system.	Favorited	Favorite	5	Open	Source!	At	SparkFun,	our	engineers	and	educators	have	been	improving	this	kit	and	coming	up	with	new	experiments	for	a	long	time	now.	We	would	like	to	give	attribution	to	Oomlout,	since	we	originally	started	working	off	their	Arduino	Kit	material	many	years	ago.	The	Oomlut	version	is	licensed	under	the
Creative	Commons	Attribution	Share-Alike	3.0	Unported	License.	The	SparkFun	Inventor's	Kit	V4.1	is	licensed	under	the	Creative	Commons	Attribution	Share-Alike	4.0	International	License.	Before	you	can	build	circuits,	you'll	want	to	first	assemble	the	breadboard	baseplate.	This	apparatus	makes	circuit	building	easier	by	keeping	the	breadboard
and	the	RedBoard	Qwiic	microcontroller	connected	together	without	the	worry	of	disconnecting	or	damaging	your	circuit.	The	larger	the	circuit,	the	more	wires	needed	to	build	it.	The	more	wires	there	are,	the	easier	it	is	for	one	of	those	wires	to	come	undone.	To	begin,	grab	all	the	parts:	the	RedBoard,	the	breadboard,	the	included	screwdriver,	the
baseplate	and	the	two	baseplate	screws.	If	the	screwdriver	end	is	a	flathead	screwdriver,	pull	the	shaft	out,	rotate	it	around	to	the	Phillips	head	screwdriver	side,	and	reinsert	the	shaft.	Next,	peel	the	adhesive	backing	off	the	breadboard.	Carefully	align	the	breadboard	over	its	spot	on	the	baseplate.	The	text	on	the	breadboard	should	face	the	same
direction	as	the	text	on	the	baseplate.	Firmly	press	the	breadboard	to	the	baseplate	to	adhere	it.	Align	the	RedBoard	with	its	spot	on	the	baseplate.	The	text	on	it	should	face	the	same	direction	as	the	text	on	the	breadboard	and	the	baseplate.	Grab	on	of	the	two	included	screws,	and	firmly	screw	it	into	one	of	the	four	stand-off	holes	found	on	the
RedBoard.	The	plastic	holes	are	not	threaded,	so	you	will	need	to	apply	pressure	as	you	twist	the	screwdriver.	Screw	the	second	screw	in	the	stand-off	hole	diagonally	across	from	the	first.	With	that,	your	baseplate	is	now	assembled.	Arduino	Uno	Baseplate	Assembly	Newer	versions	of	the	Arduino	Uno	come	with	a	clear,	plastic	baseplate	of	their	own.
It	will	need	to	be	removed	before	the	Uno	can	be	attached	to	the	breadboard	baseplate.	To	remove	it,	pull	it	from	the	Uno.	You	may	now	attach	the	Uno	to	the	baseplate	as	shown	in	the	instructions	above.	Please	Note:	The	Arduino	Uno	and	the	SparkFun	RedBoard	are	pin-for-pin	identical.	Though	the	circuits	in	this	guide	show	the	SparkFun
RedBoard,	the	Arduino	Uno	can	be	interchanged	and	used	with	all	the	same	circuit	diagrams	and	hookup	tables.	All	the	pin	names	and	locations	are	the	same	on	both	development	platforms.	The	SparkFun	RedBoard	Qwiic	is	your	development	platform.	At	its	roots,	the	RedBoard	is	essentially	a	small,	portable	computer,	also	known	as	a
microcontroller.	It	is	capable	of	taking	inputs	(such	as	the	push	of	a	button	or	a	reading	from	a	light	sensor)	and	interpreting	that	information	to	control	various	outputs	(like	blinking	an	LED	light	or	spinning	an	electric	motor).	That’s	where	the	term	“physical	computing”	comes	in;	this	board	is	capable	of	taking	the	world	of	electronics	and	relating	it
to	the	physical	world	in	a	real	and	tangible	way.	The	SparkFun	RedBoard	is	one	of	a	multitude	of	development	boards	based	on	the	ATmega328	microprocessor.	It	has	14	digital	input/output	pins	(six	of	which	can	be	PWM	outputs),	six	analog	inputs,	a	16MHz	crystal	oscillator,	a	USB	connection,	a	power	jack,	and	a	reset	button.	You’ll	learn	more
about	each	of	the	RedBoard's	features	as	you	progress	through	this	guide.	Check	out	the	guide	below	to	learn	more	about	the	SparkFun	RedBoard	Qwiic.	This	tutorial	covers	the	basic	functionality	of	the	RedBoard	Qwiic.	This	tutorial	also	covers	how	to	get	started	blinking	an	LED	and	using	the	Qwiic	system.	Favorited	Favorite	5	A	breadboard	is	a
circuit-building	platform	that	allows	you	to	connect	multiple	components	without	using	a	soldering	iron.	If	you	have	never	seen	or	used	a	breadboard	before,	it	is	highly	recommended	you	read	the	following	guide	that	explains	the	breadboards	anatomy	and	how	to	use	one.	Welcome	to	the	wonderful	world	of	breadboards.	Here	we	will	learn	what	a
breadboard	is	and	how	to	use	one	to	build	your	very	first	circuit.	Favorited	Favorite	73	The	following	steps	are	a	basic	overview	of	getting	started	with	the	Arduino	IDE.	For	more	detailed,	step-by-step	instructions	for	setting	up	the	Arduino	IDE	on	your	computer,	please	check	out	the	following	tutorial.	A	step-by-step	guide	to	installing	and	testing	the
Arduino	software	on	Windows,	Mac,	and	Linux.	Favorited	Favorite	16	In	order	to	get	your	microcontroller	up	and	running,	you'll	need	to	download	the	newest	version	of	the	Arduino	software	first	(it's	free	and	open	source!).	This	software,	known	as	the	Arduino	IDE,	will	allow	you	to	program	the	board	to	do	exactly	what	you	want.	It’s	like	a	word
processor	for	writing	code.	Download	Arduino	Example	Code	You	are	so	close	to	to	being	done	with	setup!	Download	the	SIK	Guide	Code.	You	can	also	download	the	code	from	GitHub	or	click	the	following	link	to	download	the	code:	Place	the	SIK-Guide-Code-master	folder	in	the	Arduino	IDE	examples	directory:	Windows:	drag	the	SIK-Guide-Code-
master	folder	into	C:\Program	Files\Arduino-x\examples.	Note:	For	those	that	automatically	installed	the	Arduino	IDE	on	a	Windows	64-bit	computer,	the	Arduino	program	folder	may	be	located	in	the	"C:\Program	Files	(x86)..."	folder.	MacOS:	Right-click	on	the	Arduino	IDE	app	and	click	"Show	Package	Contents...".	Drag	the	SIK-Guide-Code-master
folder	into	Contents/Java/examples.	Note:	For	those	using	an	older	Arduino	IDE	versions	(e.g.	around	v1.6.1),	the	path	to	include	the	examples	was	previously	Contents/Resources/Java.	Linux:	see	Start	the	Arduino	IDE;	the	examples	should	be	visible	in	this	menu.	Depending	on	how	the	folder	is	named,	it	should	look	similar	to:	File	>	Examples	>	SIK
Guide	Code.	If	you	are	using	the	RedBoard	Qwiic,	you	will	need	to	install	drivers	for	the	CH340.	The	drivers	for	the	CH340C	might	be	pre-installed	on	Windows,	Mac,	and	Linux.	However,	there	are	a	wide	range	of	operating	systems	and	versions	out	there	so	we	recommend	installing	the	drivers	to	ensure	that	they	work	properly.	Please	go	to	How	to
Install	CH340	Drivers	for	specific	instructions	on	how	to	install	the	CH340C	drivers	with	your	RedBoard	Qwiic.	How	to	install	CH340	drivers	(if	you	need	them)	on	Windows,	Mac	OS	X,	and	Linux.	Favorited	Favorite	9	Use	the	USB	cable	provided	in	the	SIK	kit	to	connect	the	included	microcontroller	(RedBoard	or	Arduino	Uno)	to	one	of	your
computer’s	USB	inputs.	Select	Your	Board:	Arduino/Genuino	Uno	Before	we	can	start	jumping	into	the	experiments,	there	are	a	couple	adjustments	we	need	to	make.	This	step	is	required	to	tell	the	Arduino	IDE	which	of	the	many	Arduino	boards	we	have.	Go	up	to	the	Tools	menu.	Then	hover	over	Board	and	make	sure	Arduino/Genuino	Uno	is
selected.	Please	note:	Your	SparkFun	RedBoard	Qwiic	and	the	Arduino	Uno	are	interchangeable	but	you	won’t	find	the	RedBoard	Qwiic	listed	in	the	Arduino	Software.	Select	“Arduino/Genuino	Uno”	instead.	Select	a	Serial	Port	Next	up	we	need	to	tell	the	Arduino	IDE	which	of	our	computer's	serial	ports	the	microcontroller	is	connected	to.	For	this,
again	go	up	to	Tools,	then	hover	over	Port	(Serial	Port	in	older	Arduino	versions)	and	select	your	RedBoard	or	Arduino's	serial	port.	This	will	be	the	same	serial	port	seen	when	installing	CH340	drivers.	With	that,	you're	now	ready	to	begin	building	your	first	circuit!	Walkthrough	Videos!	For	each	circuit	in	this	project,	you	can	also	follow	along	with
the	SIK	walkthrough	videos.	Check	out	the	following	video	for	more	information.	Welcome	to	your	first	SparkFun	Inventor's	Kit	project.	Each	project	is	broken	up	into	several	circuits,	each	designed	to	help	you	learn	about	new	technologies	and	concepts.	The	knowledge	gained	from	each	circuit	will	play	a	part	in	building	each	project.	This	first	project
will	set	the	foundation	for	the	rest	of	the	projects	in	the	guide	and	will	aid	in	helping	you	understand	the	basic	fundamentals	of	circuit	building	and	electricity!	In	Project	1,	you	will	learn	about	light-emitting	diodes	(LEDs),	resistors,	inputs	and	sensors	---	using	all	of	those	technologies	to	build	and	program	your	own	multicolored	night-light!	The	night-
light	uses	a	sensor	to	turn	on	an	RGB	(Red,	Green,	Blue)	LED	when	it	gets	dark,	and	you	will	be	able	to	change	the	color	using	an	input	knob.	New	Components	Introduced	in	This	Project	Each	of	the	components	listed	below	will	be	described	in	more	detail	as	you	progress	through	each	project.	LEDs	Resistors	Potentiometers	Photoresistors	New
Concepts	Introduced	in	This	Project	Each	of	the	concepts	listed	below	will	be	described	in	more	detail	as	you	progress	through	each	project.	Polarity	Ohm's	Law	Digital	Output	Analog	vs.	Digital	Analog	Input	Analog	to	Digital	Conversion	Voltage	Divider	Pulse-width	Modulation	Functions	You	Will	Learn	How	to	upload	a	program	to	your	RedBoard	or
Arduino	Uno	Circuit	building	basics	How	to	control	LEDs	with	digital	outputs	How	to	read	sensors	you	analog	inputs	Light-Emitting	Diodes,	or	LEDs	(pronounced	el-ee-dees),	are	small,	powerful	lights	that	are	used	in	many	different	applications.	You	can	find	LEDs	in	just	about	any	source	of	light	nowadays,	from	the	bulbs	lighting	your	home	to	the
tiny	status	lights	flashing	on	your	home	electronics.	Blinking	an	LED	is	the	classic	starting	point	for	learning	how	to	program	embedded	electronics.	It's	the	"Hello,	World!"	of	microcontrollers.	In	this	circuit,	you’ll	write	code	that	makes	an	LED	flash	on	and	off.	This	will	teach	you	how	to	build	a	circuit,	write	a	short	program	and	upload	that	program
to	your	RedBoard.	Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this	circuit:	New	Components	and	Concepts:	Each	circuit	will	introduce	new	components	or	parts	that	will	be	used	in	the	circuit.	Each	circuit	will	also	introduce	a	few	new	concepts	that	will	help	you	understand	what	your	circuit	and	code	is	doing	and	why.	Light-
Emitting	Diodes	(LEDs)	are	small	lights	made	from	a	silicon	diode.	They	come	in	different	colors,	brightnesses	and	sizes.	LEDs	have	a	positive	(+)	leg	and	a	negative	(-)	leg,	and	they	will	only	let	electricity	flow	through	them	in	one	direction.	LEDs	can	also	burn	out	if	too	much	electricity	flows	through	them,	so	you	should	always	use	a	resistor	to	limit
the	current	when	you	wire	an	LED	into	a	circuit.	Resistors	Resistors	resist	the	flow	of	electricity.	You	can	use	them	to	protect	sensitive	components	like	LEDs.	The	strength	of	a	resistor	(measured	in	ohms)	is	marked	on	the	body	of	the	resistor	using	small	colored	bands.	Each	color	stands	for	a	number,	which	you	can	look	up	using	a	resistor	chart.
New	Concepts	Polarity	Many	electronics	components	have	polarity,	meaning	electricity	can	only	flow	through	them	in	one	direction.	Components	like	resistors	do	not	have	polarity;	electricity	can	flow	through	them	in	either	direction.	However,	components	like	an	LED	that	do	have	polarity	only	work	when	electricity	flows	through	them	in	one
direction.	Ohm's	Law	Ohm's	law	describes	the	relationship	between	the	three	fundamental	elements	of	electricity:	voltage,	resistance	and	current.	This	relationship	can	be	represented	by	the	following	equation:	Where	V	=	Voltage	in	volts	I	=	Current	in	amps	R	=	Resistance	in	ohms	(Ω)	This	equation	is	used	to	calculate	what	resistor	values	are
suitable	to	sufficiently	limit	the	current	flowing	to	the	LED	so	that	it	does	not	get	too	hot	and	burn	out.	Digital	Output	When	working	with	microcontrollers	such	as	the	RedBoard,	there	are	a	variety	of	pins	to	which	you	can	connect	electronic	components.	Knowing	which	pins	perform	which	functions	is	important	when	building	your	circuit.	In	this
circuit,	we	will	be	using	what	is	known	as	a	digital	output.	There	are	14	of	these	pins	found	on	the	RedBoard	and	Arduino	Uno.	A	digital	output	only	has	two	states:	ON	or	OFF.	These	two	states	can	also	be	thought	of	as	HIGH	or	LOW	or	TRUE	or	FALSE.	When	an	LED	is	connected	to	one	of	these	pins,	the	pin	can	only	perform	two	jobs:	turning	the
LED	on	and	turning	the	LED	off.	We'll	explore	the	other	pins	and	their	functions	in	later	circuits.	The	14	digital	pins	highlighted.	Hardware	Hookup	We	recommend	familiarizing	yourself	with	each	of	the	components	used	in	each	circuit	first.	Polarized	Components	Pay	special	attention	to	the	component’s	markings	indicating	how	to	place	it	on	the
breadboard.	Polarized	components	can	only	be	connected	to	a	circuit	in	one	direction.	**Pay	close	attention	to	the	LED.	It	is	polarized.	The	negative	side	of	the	LED	is	the	short	leg,	marked	with	a	flat	edge.	**	Components	like	resistors	need	to	have	their	legs	bent	into	90°	angles	in	order	to	correctly	fit	the	breadboard	sockets.	Ready	to	start	hooking
everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below,	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on	the	image	for	a	closer	look.	Hookup	Table	Hookup	Tables:	Many	electronics	beginners	find	it	helps	to	have	a	coordinate	system	when	building	their	circuits.	For	each	circuit,	you'll
find	a	hookup	table	that	lists	the	coordinates	of	each	component	and	where	it	connects	to	the	RedBoard,	the	breadboard,	or	both.	The	breadboard	has	a	letter/number	coordinate	system,	just	like	the	game	Battleship.	Component	RedBoard	Breadboard	Breadboard	LED	A1	LED	(-)	A2	LED	(+)	330Ω	Resistor(orange,	orange,	brown)	E2	F2	Jumper
Wire	GND	E1	Jumper	Wire	Digital	Pin	13	J2	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	Your	First	Sketch	Open	the	Arduino	IDE	software	on	your	computer.	Open	the	code	for	Circuit	1A	by	accessing	the	SIK	Guide	Code	you	downloaded	and	placed	into	your	examples	folder
earlier.	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_1A-Blink	You	can	also	copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	1A-Blink	Turns	an	LED	connected	to	pin	13	on	and	off.	Repeats	forever.	This	sketch	was	written
by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	code	at:	*/	void	setup()	{	pinMode(13,	OUTPUT);	//	Set	pin	13	to	output	}	void	loop()	{	digitalWrite(13,	HIGH);	//	Turn	on	the	LED	delay(2000);	//	Wait	for	two	seconds	digitalWrite(13,
LOW);	//	Turn	off	the	LED	delay(2000);	//	Wait	for	two	seconds	}	What	You	Should	See	The	LED	will	flash	on	for	two	seconds,	off	for	two	seconds,	then	repeat.	If	it	doesn't,	make	sure	you	have	assembled	the	circuit	correctly	and	verified	and	uploaded	the	code	to	your	board,	or	see	the	Troubleshooting	section	at	the	end	of	this	section.	Program
Overview	Turn	the	LED	on	by	sending	power	to	Pin	13.	Wait	2	seconds	(2000	milliseconds).	Turn	the	LED	off	by	cutting	power	to	Pin	13.	Wait	2	seconds	(2000	milliseconds).	Repeat.	One	of	the	best	ways	to	understand	the	code	you	just	uploaded	is	to	change	something	and	see	how	it	affects	the	behavior	of	your	circuit.	For	this	first	circuit,	try
changing	the	number	found	in	these	lines	of	code:	delay(2000);.	What	happens	if	you	change	both	to	100?	What	happens	if	you	change	both	to	5000?	What	happens	if	you	change	just	one	delay	and	not	the	other?	Onboard	LED	PIN	13:	You	may	have	noticed	a	second,	smaller	LED	blinking	in	unison	with	the	LED	in	your	breadboard	circuit.	This	is
known	as	the	onboard	LED,	and	you	can	find	one	on	almost	any	Arduino	or	Arduino-compatible	board	including	the	RedBoard.	In	most	cases,	this	LED	is	connected	to	digital	pin	13	(D13),	which	is	the	same	pin	used	in	this	circuit.	This	LED	is	useful	for	troubleshooting,	as	you	can	always	upload	the	Blink	sketch	to	see	if	that	LED	lights	up.	If	so,	you
know	your	board	is	functioning	properly.	If	you	do	not	want	this	LED	to	blink	with	other	LEDs	in	your	circuits,	simply	use	any	of	the	other	12	digital	pins	(D0-D12).	Code	to	Note	Code	to	Note:	The	sketches	that	accompany	each	circuit	introduce	new	programming	techniques	and	concepts	as	you	progress	through	the	guide.	The	Code	to	Note	section
highlights	specific	lines	of	code	from	the	sketch	and	explains	them	in	further	detail.	CodeDescription	Setup	and	Loop:void	setup(){code	to	run	once}	&	void	loop(){code	to	run	forever}Every	Arduino	program	needs	these	two	functions.	Code	that	goes	in	between	the	curly	brackets	of	setup()	runs	once,	then	the	code	in	between	the	loop()	curly
brackets	runs	over	and	over	until	the	RedBoard	is	reset	or	powered	off.	Input	or	Output?:pinMode(13,	OUTPUT);Before	you	can	use	one	of	the	digital	pins,	you	need	to	tell	the	RedBoard	whether	it	is	an	INPUT	or	OUTPUT.	We	use	a	built-in	"function"	called	pinMode()	to	make	pin	13	a	digital	output.	You'll	learn	more	about	digital	inputs	in	Project	2.
Digital	Output:digitalWrite(13,	HIGH);When	you're	using	a	pin	as	an	OUTPUT,	you	can	command	it	to	be	HIGH	(output	5	volts)	or	LOW	(output	0	volts).	Delay:delay(time	in	milliseconds);Causes	the	program	to	wait	on	this	line	of	code	for	the	amount	of	time	in	between	the	brackets.	After	the	time	has	passed,	the	program	will	continue	to	the	next	line
of	code.	Comments://This	is	a	commentComments	are	a	great	way	to	leave	notes	in	your	code	explaining	why	you	wrote	it	the	way	you	did.	You'll	find	many	comments	in	the	examples	that	further	explain	what	the	code	is	doing	and	why.	Comments	can	be	single	line	using	//,	or	they	can	be	multi-line	using	/*	*/.	Coding	Challenges:	The	Coding
Challenges	section	is	where	you	can	find	suggestions	for	changes	to	the	circuit	or	code	that	will	make	the	circuit	more	challenging.	If	you	feel	underwhelmed	by	the	tasks	in	each	circuit,	visit	the	Coding	Challenges	section	to	push	yourself	to	the	next	level.	ChallengeDescription	Persistence	of	VisionComputer	screens,	movies	and	the	lights	in	your
house	all	flicker	so	quickly	that	they	appear	to	be	on	all	of	the	time	but	are	actually	blinking	faster	than	the	human	eye	can	detect.	See	how	much	you	can	decrease	the	delay	time	in	your	program	before	the	light	appears	to	be	on	all	the	time	but	is	still	blinking.	Morse	CodeTry	changing	the	delays	and	adding	more	digitalWrite()	commands	to	make
your	program	blink	a	message	in	Morse	code.	Troubleshooting:	Last,	each	circuit	has	a	Troubleshooting	section	with	helpful	tips	and	tricks	to	aid	you	in	any	problems	you	encounter	along	the	way.	ProblemSolution	I	get	an	error	when	uploading	my	codeThe	most	likely	cause	is	that	you	have	the	wrong	board	selected	in	the	Arduino	IDE.	Make	sure	you
have	selected	Tools	>	Board	>	Arduino/Genuino	Uno.	I	still	get	an	error	when	uploading	my	codeIf	you're	sure	you	have	the	correct	Board	selected	but	you	still	can't	upload,	check	that	you	have	selected	the	correct	Serial	Port.	You	can	change	this	in	Tools	>	Serial	Port	>	your_serial_port.	Which	Serial	Port	is	the	right	one?Depending	on	how	many
devices	you	have	plugged	into	your	computer,	you	may	have	several	active	Serial	Ports.	Make	sure	you	are	selecting	the	correct	one.	A	simple	way	to	determine	this	is	to	look	at	your	list	of	Serial	Ports.	Unplug	your	RedBoard	from	your	computer.	Look	at	the	list	again.	Whichever	Serial	Port	has	disappeared	from	the	list	is	the	one	you	want	to	select
once	you	plug	your	board	back	in	to	your	computer.	My	code	uploads,	but	my	LED	won’t	turn	onLEDs	will	only	work	in	one	direction.	Try	taking	it	out	of	your	breadboard,	turning	it	180	degrees,	and	reinserting	it.	Still	not	working?Jumper	wires	unfortunately	can	go	"bad"	from	getting	bent	too	much.	The	copper	wire	inside	can	break,	leaving	an	open
connection	in	your	circuit.	If	you	are	certain	that	your	circuit	is	wired	correctly	and	that	your	code	is	error-free	and	uploaded	but	you	are	still	encountering	issues,	try	replacing	one	or	more	of	the	jumper	wires	for	the	component	that	is	not	working.	Potentiometers	(also	known	as	“pots”	or	“knobs”)	are	one	of	the	basic	inputs	for	electronics	devices.	By
tracking	the	position	of	the	knob	with	your	RedBoard,	you	can	make	volume	controls,	speed	controls,	angle	sensors	and	a	ton	of	other	useful	inputs	for	your	projects.	In	this	circuit,	you'll	use	a	potentiometer	as	an	input	device	to	control	the	speed	at	which	your	LED	blinks.	Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this
circuit:	New	Components	Potentiometer	A	potentiometer	(trimpot	for	short)	is	a	variable	resistor.	When	powered	with	5V,	the	middle	pin	outputs	a	voltage	between	0V	and	5V,	depending	on	the	position	of	the	knob	on	the	potentiometer.	Internal	to	the	trimpot	is	a	single	resistor	and	a	wiper,	which	cuts	the	resistor	in	two	and	moves	to	adjust	the	ratio
between	both	halves.	Externally,	there	are	usually	three	pins:	two	pins	connect	to	each	end	of	the	resistor,	while	the	third	connects	to	the	pot's	wiper.	New	Concepts	Analog	vs.	Digital	Understanding	the	difference	between	analog	and	digital	is	a	fundamental	concept	in	electronics.	We	live	in	an	analog	world.	There	is	an	infinite	number	of	colors	to
paint	an	object	(even	if	the	difference	is	indiscernible	to	our	eye),	an	infinite	number	of	tones	we	can	hear,	and	an	infinite	number	of	smells	we	can	smell.	The	common	theme	among	all	of	these	analog	signals	is	their	infinite	possibilities.	Digital	signals	deal	in	the	realm	of	the	discrete	or	finite,	meaning	there	is	a	limited	set	of	values	they	can	be.	The
LED	from	the	previous	circuit	had	only	two	states	it	could	exist	in,	ON	or	OFF,	when	connected	to	a	Digital	Output.	Analog	Inputs	So	far,	we've	only	dealt	with	outputs.	The	RedBoard	also	has	inputs.	Both	inputs	and	outputs	can	be	analog	or	digital.	Based	on	our	definition	of	analog	and	digital	above,	that	means	an	analog	input	can	sense	a	wide	range
of	values	versus	a	digital	input,	which	can	only	sense	two	states.	You	may	have	noticed	some	pins	labeled	Digital	and	some	labeled	Analog	In	on	your	RedBoard.	There	are	only	six	pins	that	function	as	analog	inputs;	they	are	labeled	A0--A5.	The	six	analog	pins	highlighted.	Voltage	Divider	A	voltage	divider	is	a	simple	circuit	that	turns	some	voltage	into
a	smaller	voltage	using	two	resistors.	The	following	is	a	schematic	of	the	voltage	divider	circuit.	Schematics	are	a	universally	agreed	upon	set	of	symbols	that	engineers	use	to	represent	electric	circuits.	A	potentiometer	is	a	variable	resistor	that	can	be	used	to	create	an	adjustable	voltage	divider.	A	potentiometer	schematic	symbol	where	pins	1	and	3
are	the	resistor	ends,	and	pin	2	connects	to	the	wiper	If	the	outside	pins	connect	to	a	voltage	source	(one	to	ground,	the	other	to	Vin),	the	output	(Vout)	at	the	middle	pin	will	mimic	a	voltage	divider.	Turn	the	trimpot	all	the	way	in	one	direction,	and	the	voltage	may	be	zero;	turned	to	the	other	side,	the	output	voltage	approaches	the	input.	A	wiper	in
the	middle	position	means	the	output	voltage	will	be	half	of	the	input.	Voltage	dividers	will	be	covered	in	more	detail	in	the	next	circuit.	Hardware	Hookup	The	potentiometer	has	three	legs.	Pay	close	attention	into	which	pins	you're	inserting	it	on	the	breadboard,	as	they	will	be	hard	to	see	once	inserted.	Potentiometers	are	not	polarized.	You	can
attach	either	of	the	outside	pins	to	5V	and	the	opposite	to	GND.	However,	the	values	you	get	out	of	the	trimpot	will	change	based	on	which	pin	is	5V	and	which	is	GND.	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the
circuit?	Click	on	the	image	for	a	closer	look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Breadboard	Jumper	Wire	5V	5V	Rail	(+)	Jumper	Wire	GND	GND	Rail	(-)	LED	A1	LED	(-)	A2	LED	(+)	330Ω	Resistor(orange,	orange,	brown)	E2	F2	Jumper	Wire	E1	GND	Rail	(-)	Jumper	Wire	Digital	Pin	13	J2	Potentiometer	B25	B26	B27
Jumper	Wire	Analog	Pin	0	(A0)	E26	Jumper	Wire	E25	5V	Rail	(+)	Jumper	Wire	E27	GND	Rail	(-)	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_1B-Potentiometer	You	can	also	copy	and
paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	1B-Potentiometer	Changes	how	fast	an	LED	connected	to	pin	13	blinks,	based	on	a	potentiometer	connected	to	pin	A0	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This
code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	code	at:	*/	int	potPosition;	//this	variable	will	hold	a	value	based	on	the	position	of	the	potentiometer	void	setup()	{	Serial.begin(9600);	//start	a	serial	connection	with	the	computer	pinMode(13,	OUTPUT);	//set	pin	13	as	an	output	that	can	be	set	to	HIGH	or	LOW	}
void	loop()	{	//read	the	position	of	the	pot	potPosition	=	analogRead(A0);	//set	potPosition	to	a	number	between	0	and	1023	based	on	how	far	the	knob	is	turned	Serial.println(potPosition);	//print	the	value	of	potPosition	in	the	serial	monitor	on	the	computer	//change	the	LED	blink	speed	based	on	the	pot	value	digitalWrite(13,	HIGH);	//	Turn	on	the
LED	delay(potPosition);	//	delay	for	as	many	milliseconds	as	potPosition	(0-1023)	digitalWrite(13,	LOW);	//	Turn	off	the	LED	delay(potPosition);	//	delay	for	as	many	milliseconds	as	potPosition	(0-1023)	}	What	You	Should	See	You	should	see	the	LED	blink	faster	or	slower	in	accordance	with	your	potentiometer.	The	delay	between	each	flash	will	change
based	on	the	position	of	the	knob.	If	it	isn't	working,	make	sure	you	have	assembled	the	circuit	correctly	and	verified	and	uploaded	the	code	to	your	board,	or	see	the	Troubleshooting	section.	Program	Overview	Read	the	position	of	the	potentiometer	(from	0	to	1023)	and	store	it	in	the	variable	potPosition.	Turn	the	LED	on.	Wait	from	0	to	1023
milliseconds,	based	on	the	position	of	the	knob	and	the	value	of	potPosition.	Turn	the	LED	off.	Wait	from	0	to	1023	milliseconds,	based	on	the	position	of	the	knob	and	the	value	of	potPosition.	Repeat.	The	Serial	Monitor:	The	Serial	Monitor	is	one	of	the	Arduino	IDE's	many	great	built-in	tools.	It	can	help	you	understand	the	values	that	your	program	is
trying	to	work	with,	and	it	can	be	a	powerful	debugging	tool	when	you	run	into	issues	where	your	code	is	not	behaving	the	way	you	expected	it	to.	This	circuit	introduces	you	to	the	Serial	Monitor	by	showing	you	how	to	print	the	values	from	your	potentiometer	to	it.	To	see	these	values,	click	the	Serial	Monitor	button,	found	in	the	upper-right	corner	of
the	IDE	in	most	recent	versions.	You	can	also	select	Tools	>	Serial	Monitor	from	the	menu.	You	should	then	see	numeric	values	print	out	on	the	monitor.	Turn	the	potentiometer,	and	you	should	see	the	values	change	as	well	as	the	delay	between	each	print.	If	you	are	having	trouble	seeing	the	values,	ensure	that	you	have	selected	9600	baud	in	the
dropdown	menu	and	have	auto	scroll	checked.	Code	to	Note	CodeDescription	Integer	Variables:int	potPosition;A	variable	is	a	placeholder	for	values	that	may	change	in	your	code.	You	must	introduce,	or	"declare"	variables	before	you	use	them.	Here	we're	declaring	a	variable	called	potPosition	of	type	int	(integer).	We	will	cover	more	types	of
variables	in	later	circuits.	Don't	forget	that	variable	names	are	case-sensitive!	Serial	Begin:Serial.begin(9600);Serial	commands	can	be	used	to	send	and	receive	data	from	your	computer.	This	line	of	code	tells	the	RedBoard	that	we	want	to	"begin"	that	communication	with	the	computer,	the	same	way	we	would	say	"Hi"	to	initiate	a	conversation.
Notice	that	the	baud	rate,	9600,	is	the	same	as	the	one	we	selected	in	the	monitor.	This	is	the	speed	at	which	the	two	devices	communicate,	and	it	must	match	on	both	sides.	Analog	Input:potPosition	=	analogRead(A0);We	use	the	analogRead()	function	to	read	the	value	on	an	analog	pin.	analogRead()	takes	one	parameter,	the	analog	pin	you	want	to
use,	A0	in	this	case,	and	returns	a	number	between	0	(0	volts)	and	1023	(5	volts),	which	is	then	assigned	to	the	variable	potPosition.	Serial	Print:Serial.println(potPosition);This	is	the	line	that	actually	prints	the	trimpot	value	to	the	monitor.	It	takes	the	variable	potPosition	and	prints	whatever	value	it	equals	at	that	moment	in	the	loop().	The	ln	at	the
end	of	print	tells	the	monitor	to	print	a	new	line	at	the	end	of	each	value;	otherwise	the	values	would	all	run	together	on	one	line.	Try	removing	the	ln	to	see	what	happens.	Coding	Challenges	ChallengeDescription	Changing	the	RangeTry	multiplying,	dividing	or	adding	to	your	sensor	reading	so	that	you	can	change	the	range	of	the	delay	in	your	code.
For	example,	can	you	multiply	the	sensor	reading	so	that	the	delay	goes	from	0–2046	instead	of	0–1023?	Adding	More	LEDsAdd	more	LEDs	to	your	circuit.	Don't	forget	the	current	limiting	resistor	for	each	one.	Try	making	multiple	LEDs	blink	at	different	rates	by	changing	the	range	of	each	using	multiplication	or	division.	Troubleshooting
ProblemSolution	The	potentiometer	always	reads	as	0	or	1023Make	sure	that	your	5V,	A0	and	GND	pins	are	properly	connected	to	the	three	pins	on	your	potentiometer.	It	is	easy	to	misalign	a	wire	with	the	actual	trimpot	pin.	No	values	in	Serial	MonitorMake	sure	that	you	have	selected	the	correct	baud	rate,	9600.	Also	ensure	that	you	are	on	the
correct	Serial	Port.	The	same	Serial	Port	you	use	when	uploading	code	to	your	board	is	the	same	Serial	Port	you	use	to	print	values	to	the	Serial	Monitor.	In	circuit	1B,	you	got	to	use	a	potentiometer,	which	varies	resistance	based	on	the	twisting	of	a	knob.	In	this	circuit	you’ll	be	using	a	photoresistor,	which	changes	resistance	based	on	how	much
light	the	sensor	receives.	Using	this	sensor	you	can	make	a	simple	night-light	that	turns	on	when	the	room	gets	dark	and	turns	off	when	it	is	bright.	Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this	circuit:	New	Components	Photoresistor	Photoresistors,	or	photocells,	are	light-sensitive,	variable	resistors.	As	more	light	shines
on	the	sensor’s	head,	the	resistance	between	its	two	terminals	decreases.	They’re	an	easy-to-use	component	in	projects	that	require	ambient-light	sensing.	New	Concepts	Analog	to	Digital	Conversion	The	world	we	live	in	is	analog,	but	the	RedBoard	lives	in	a	digital	world.	In	order	to	have	the	RedBoard	sense	analog	signals,	we	must	first	pass	them
through	an	Analog	to	Digital	Converter	(or	ADC).	The	six	analog	inputs	(A0--A5)	covered	in	the	last	circuit	all	use	an	ADC.	These	pins	"sample"	the	analog	signal	and	create	a	digital	signal	for	the	microcontroller	to	interpret.	The	"resolution"	of	this	signal	is	based	on	the	resolution	of	the	ADC.	In	the	case	of	the	RedBoard,	that	resolution	is	10-bit.	With
a	10-bit	ADC,	we	get	2	^	10	=	1024	possible	values,	which	is	why	the	analog	signal	varies	between	0	and	1023.	Voltage	Divider	Continued	Since	the	RedBoard	can’t	directly	interpret	resistance	(rather,	it	reads	voltage),	we	need	to	use	a	voltage	divider	to	use	our	photoresistor,	a	part	that	doesn't	output	voltage.	The	resistance	of	the	photoresistor
changes	as	it	gets	darker	or	lighter.	That	changes	the	amount	of	voltage	that	is	read	on	the	analog	pin,	which	"divides"	the	voltage,	5V	in	this	case.	That	divided	voltage	is	then	read	on	the	analog	to	digital	converter.	Left:	A	regular	voltage	divider	circuit.	Vout	will	be	a	constant	voltage.	Right:	A	variable	voltage	divider	circuit.	Vout	will	fluctuate	as	the
resistance	of	the	photoresistor	changes.	The	voltage	divider	equation	assumes	that	you	know	three	values	of	the	above	circuit:	the	input	voltage	(Vin),	and	both	resistor	values	(R1	and	R2).	Given	those	values,	we	can	use	this	equation	to	find	the	output	voltage	(Vout):	If	R1	is	a	constant	value	(the	resistor)	and	R2	fluctuates	(the	photoresistor),	the
amount	of	voltage	measured	on	the	Vout	pin	will	also	fluctuate.	Hardware	Hookup	Note	that	the	photoresistor	is	not	polarized.	It	can	be	inserted	in	either	direction.	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?
Click	on	the	image	for	a	closer	look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Jumper	Wire	5V	5V	Rail	(+)	Jumper	Wire	GND	GND	Rail	(-)	LED	A1	LED	(-)	A2	LED	(+)	330Ω	Resistor(orange,	orange,	brown)	E2	F2	Jumper	Wire	E1	GND	Rail	(-)	Jumper	Wire	Digital	Pin	13	J2	Photoresistor	A26	B25	10kΩ	Resistor(brown,	black,
orange)	C26	D27	Jumper	Wire	Analog	Pin	0	(A0)	E26	Jumper	Wire	E25	5V	Rail	(+)	Jumper	Wire	E27	GND	Rail	(-)	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_1C-Photoresistor	You	can
also	copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	1C-Photoresistor	Use	a	photoresistor	to	monitor	how	bright	a	room	is,	and	turn	an	LED	on	when	it	gets	dark.	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.
This	code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	int	photoresistor	=	0;	//this	variable	will	hold	a	value	based	on	the	brightness	of	the	ambient	light	int	threshold	=	750;	//if	the	photoresistor	reading	is	below	this	value	the	the	light	will	turn	on	void	setup()	{	Serial.begin(9600);	//start	a
serial	connection	with	the	computer	pinMode(13,	OUTPUT);	//set	pin	13	as	an	output	that	can	be	set	to	HIGH	or	LOW	}	void	loop()	{	//read	the	brightness	of	the	ambient	light	photoresistor	=	analogRead(A0);	//set	photoresistor	to	a	number	between	0	and	1023	based	on	how	bright	the	ambient	light	is	Serial.println(photoresistor);	//print	the	value	of
photoresistor	in	the	serial	monitor	on	the	computer	//if	the	photoresistor	value	is	below	the	threshold	turn	the	light	on,	otherwise	turn	it	off	if	(photoresistor	<	threshold)	{	digitalWrite(13,	HIGH);	//	Turn	on	the	LED	}	else	{	digitalWrite(13,	LOW);	//	Turn	off	the	LED	}	delay(100);	//short	delay	to	make	the	printout	easier	to	read	}	What	You	Should	See
The	program	stores	the	light	level	in	a	variable,	photoresistor.	Then,	using	an	if/else	statement,	the	program	checks	to	see	what	it	should	do	with	the	LED.	If	the	variable	is	above	the	threshold	(it’s	bright),	turn	the	LED	off.	If	the	variable	is	below	the	threshold	(it’s	dark),	turn	the	LED	on.	You	now	have	just	built	your	own	night-light!	Open	the	Serial
Monitor	in	Arduino.	The	value	of	the	photoresistor	should	be	printed	every	so	often.	When	the	photoresistor	value	drops	below	the	threshold	value	set	in	the	code,	the	LED	should	turn	on	(you	can	cover	the	photoresistor	with	your	finger	to	make	the	value	drop).	Note:	If	the	room	you	are	in	is	very	bright	or	dark,	you	may	have	to	change	the	value	of
the	“threshold”	variable	in	the	code	to	make	your	night-light	turn	on	and	off.	See	the	Troubleshooting	section	for	instructions.	Store	the	light	level	in	the	variable	photoresistor.	If	the	value	of	photoresistor	is	above	the	threshold	(it’s	bright),	turn	the	LED	off.	If	the	value	of	photoresistor	is	below	the	threshold	(it’s	dark),	turn	the	LED	on.
CodeDescription	If/else	Statements:if(logic	statement)	{	code	to	be	run	if	the	logic	statement	is	true}	else	{code	to	be	run	if	the	logic	statement	is	false	}	The	if/else	statement	lets	your	code	react	to	the	world	by	running	one	set	of	code	when	the	logic	statement	in	the	round	brackets	is	true	and	another	set	of	code	when	the	logic	statement	is	false.
For	example,	this	sketch	uses	an	if	statement	to	turn	the	LED	on	when	it	is	dark,	and	turn	the	LED	off	when	it	is	light.	Logical	Operators:(photoresistor	<	threshold)	Programmers	use	logic	statements	to	translate	things	that	happen	in	the	real	world	into	code.	Logic	statements	use	logical	operators	such	as	'equal	to'	(==),	'greater	than'	(>),	and	'less
than'	(Port,	and	make	sure	that	you	select	the	right	port.	In	this	circuit,	you'll	take	the	night-light	concept	to	the	next	level	by	adding	an	RGB	LED,	which	is	three	differently	colored	Light-Emitting	Diodes	(LEDs)	built	into	one	component.	RGB	stands	for	Red,	Green	and	Blue,	and	these	three	colors	can	be	combined	to	create	any	color	of	the	rainbow!
Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this	circuit:	New	Components	RGB	LED	An	RGB	LED	is	actually	three	small	LEDs	---	one	red,	one	green	and	one	blue	---	inside	a	normal	LED	housing.	The	RGB	LED	included	in	this	kit	has	all	the	internal	LEDs	share	the	same	ground	wire,	so	there	are	four	legs	in	total.	To	turn	one
color	on,	ensure	ground	is	connected,	then	power	one	of	the	legs	just	as	you	would	a	regular	LED.	If	you	turn	on	more	than	one	color	at	a	time,	you	will	see	the	colors	start	to	blend	together	to	form	a	new	color.	New	Concepts	Analog	Output	(Pulse-width	Modulation)	You	can	use	the	digitalWrite()	command	to	turn	pins	on	the	RedBoard	on	(5V)	or	off
(0V),	but	what	if	you	want	to	output	2.5V?	The	RedBoard	doesn't	have	an	Analog	Output,	but	it	is	really	good	at	switching	some	digital	pins	on	and	off	fast	enough	to	simulate	an	analog	output.	analogWrite()	can	output	2.5	volts	by	quickly	switching	a	pin	on	and	off	so	that	the	pin	is	only	on	50	percent	of	the	time	(50%	of	5V	is	2.5V).	By	changing	the
percent	of	time	that	a	pin	is	on,	from	0	percent	(always	off)	to	100	percent	(always	on),	analogWrite()	can	output	any	voltage	between	0	and	5V.	This	is	what	is	known	as	pulse-width	modulation	(or	PWM).	By	using	PWM,	you	can	create	many	different	colors	with	the	RGB	LED.	Digital	(PWM~):	Only	a	few	of	the	pins	on	the	RedBoard	have	the	circuitry
needed	to	turn	on	and	off	fast	enough	for	PWM.	These	are	pins	3,	5,	6,	9,	10	and	11.	Each	PWM	pin	is	marked	with	a	~	on	the	board.	Remember,	you	can	only	use	analogWrite()	on	these	pins.	Creating	Your	Own	Simple	Functions	When	programmers	want	to	use	a	piece	of	code	over	and	over	again,	they	write	a	function.	The	simplest	functions	are	just
chunks	of	code	that	you	give	a	name	to.	When	you	want	to	run	that	code,	you	can	“call”	the	function	by	typing	its	name,	instead	of	writing	out	all	of	the	code.	More	complicated	functions	take	and	return	pieces	of	information	from	the	program	(we	call	these	pieces	of	information	parameters).	In	this	circuit,	you'll	write	functions	to	turn	the	RGB	LED
different	colors	by	just	typing	that	color's	name.	Hardware	Hookup	Polarized	Components	Pay	special	attention	to	the	component’s	markings	indicating	how	to	place	it	on	the	breadboard.	Polarized	components	can	only	be	connected	to	a	circuit	in	one	direction.	Just	like	a	regular	LED,	an	RGB	LED	is	polarized	and	only	allows	electricity	to	flow	in	one
direction.	Pay	close	attention	to	the	flat	edge	and	to	the	different	length	leads.	Both	are	indicators	to	help	orient	the	LED	correctly.	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on	the	image	for	a	closer
look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Breadboard	Breadboard	RGB	LED	A5	(RED)	A4	(GND)	A3	(GREEN)	A2	(BLUE)	330Ω	Resistor(orange,	orange,	brown)	E2	F2	330Ω	Resistor(orange,	orange,	brown)	E3	F3	330Ω	Resistor(orange,	orange,	brown)	E5	F5	Jumper	Wire	E4	GND	Rail	(-)	Jumper	Wire	Digital	Pin	9	J5	Jumper
Wire	Digital	Pin	10	J3	Jumper	Wire	Digital	Pin	11	J2	Jumper	Wire	5V	5V	Rail	(+)	Jumper	Wire	GND	GND	Rail	(-)	Potentiometer	B15	B16	B17	Jumper	Wire	Analog	Pin	1	(A1)	E16	Jumper	Wire	E15	5V	Rail	(+)	Jumper	Wire	E17	GND	Rail	(-)	Photoresistor	A26	B25	10kΩ	Resistor(brown,	black,	orange)	C26	D27	Jumper	Wire	Analog	Pin	0	(A0)	E26
Jumper	Wire	E25	5V	Rail	(+)	Jumper	Wire	E27	GND	Rail	(-)	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_1D-RGBNightlight	You	can	also	copy	and	paste	the	following	code	into	the
Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	1D-RGB	Nightlight	Turns	an	RGB	LED	on	or	off	based	on	the	light	level	read	by	a	photoresistor.	Change	colors	by	turning	the	potentiometer.	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is
completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	int	photoresistor	=	A0;	//variable	for	storing	the	photoresistor	value	int	potentiometer	=	A1;	//this	variable	will	hold	a	value	based	on	the	position	of	the	knob	int	threshold	=	700;	//if	the	photoresistor	reading	is	lower	than	this	value	the	light	will
turn	on	//LEDs	are	connected	to	these	pins	int	RedPin	=	9;	int	GreenPin	=	10;	int	BluePin	=	11;	void	setup()	{	Serial.begin(9600);	//start	a	serial	connection	with	the	computer	//set	the	LED	pins	to	output	pinMode(RedPin,	OUTPUT);	pinMode(GreenPin,	OUTPUT);	pinMode(BluePin,	OUTPUT);	}	void	loop()	{	photoresistor	=	analogRead(A0);	//read	the
value	of	the	photoresistor	potentiometer	=	analogRead(A1);	Serial.print("Photoresistor	value:");	Serial.print(photoresistor);	//print	the	photoresistor	value	to	the	serial	monitor	Serial.print("	Potentiometer	value:");	Serial.println(potentiometer);	//print	the	potentiometer	value	to	the	serial	monitor	if	(photoresistor	<	threshold)	{	//if	it's	dark	(the
photoresistor	value	is	below	the	threshold)	turn	the	LED	on	//These	nested	if	statements	check	for	a	variety	of	ranges	and	//call	different	functions	based	on	the	current	potentiometer	value.	//Those	functions	are	found	at	the	bottom	of	the	sketch.	if	(potentiometer	>	0	&&	potentiometer	150	&&	potentiometer	300	&&	potentiometer	450	&&
potentiometer	600	&&	potentiometer	750	&&	potentiometer	900)	magenta();	}	else	{	//if	it	isn't	dark	turn	the	LED	off	turnOff();	//call	the	turn	off	function	}	delay(100);	//short	delay	so	that	the	printout	is	easier	to	read	}	void	red	()	{	//set	the	LED	pins	to	values	that	make	red	analogWrite(RedPin,	100);	analogWrite(GreenPin,	0);	analogWrite(BluePin,
0);	}	void	orange	()	{	//set	the	LED	pins	to	values	that	make	orange	analogWrite(RedPin,	100);	analogWrite(GreenPin,	50);	analogWrite(BluePin,	0);	}	void	yellow	()	{	//set	the	LED	pins	to	values	that	make	yellow	analogWrite(RedPin,	100);	analogWrite(GreenPin,	100);	analogWrite(BluePin,	0);	}	void	green	()	{	//set	the	LED	pins	to	values	that	make
green	analogWrite(RedPin,	0);	analogWrite(GreenPin,	100);	analogWrite(BluePin,	0);	}	void	cyan	()	{	//set	the	LED	pins	to	values	that	make	cyan	analogWrite(RedPin,	0);	analogWrite(GreenPin,	100);	analogWrite(BluePin,	100);	}	void	blue	()	{	//set	the	LED	pins	to	values	that	make	blue	analogWrite(RedPin,	0);	analogWrite(GreenPin,	0);
analogWrite(BluePin,	100);	}	void	magenta	()	{	//set	the	LED	pins	to	values	that	make	magenta	analogWrite(RedPin,	100);	analogWrite(GreenPin,	0);	analogWrite(BluePin,	100);	}	void	turnOff	()	{	//set	all	three	LED	pins	to	0	or	OFF	analogWrite(RedPin,	0);	analogWrite(GreenPin,	0);	analogWrite(BluePin,	0);	}	What	You	Should	See	This	sketch	is	not
dissimilar	from	the	last.	It	reads	the	value	from	the	photoresistor,	compares	it	to	a	threshold	value,	and	turns	the	RGB	LED	on	or	off	accordingly.	This	time,	however,	we've	added	a	potentiometer	back	into	the	circuit.	When	you	twist	the	pot,	you	should	see	the	color	of	the	RGB	LED	change	based	on	the	pot's	value.	Open	the	Serial	Monitor.	The	value
being	read	by	the	light	sensor	should	be	printed	several	times	a	second.	When	you	turn	out	the	lights	or	cover	the	sensor,	the	LED	will	shine	whatever	color	your	programmed	in	your	color	function.	Next	to	the	light	value,	you'll	see	the	potentiometer	value	print	out	as	well.	Note:	If	the	room	you	are	in	is	very	bright	or	dark,	you	may	have	to	change
the	value	of	the	“threshold”	variable	in	the	code	to	make	your	night-light	turn	on	and	off.	See	the	Troubleshooting	section	for	instructions.	Store	the	light	level	from	pin	A0	in	the	variable	photoresistor.	Store	the	potentiometer	value	from	pin	A1	in	the	variable	potentiometer.	If	the	light	level	variable	is	above	the	threshold,	call	the	function	that	turns
the	RGB	LED	off.	If	the	light	level	variable	is	below	the	threshold,	call	one	of	the	color	functions	to	turn	the	RGB	LED	on.	If	potentiometer	is	between	0	and	150,	turn	the	RGB	LED	on	red.	If	potentiometer	is	between	151	and	300,	turn	the	RGB	LED	on	orange.	If	potentiometer	is	between	301	and	450,	turn	the	RGB	LED	on	yellow.	If	potentiometer	is
between	451	and	600,	turn	the	RGB	LED	on	green.	If	potentiometer	is	between	601	and	750,	turn	the	RGB	LED	on	cyan.	If	potentiometer	is	between	751	and	900,	turn	the	RGB	LED	on	blue.	If	potentiometer	is	greater	than	900,	turn	the	RGB	LED	on	magenta.	CodeDescription	Analog	Output	(PWM):analogWrite(RedPin,	100);	The	analogWrite()
function	outputs	a	voltage	between	0	and	5V	on	a	pin.	The	function	breaks	the	range	between	0	and	5V	into	255	little	steps.	Note	that	we	are	not	turning	the	LED	on	to	full	brightness	(255)	in	this	code	so	that	the	night-light	is	not	too	bright.	Feel	free	to	change	these	values	and	see	what	happens.	Nested	if	Statements:if(logic	statement)	{	if(logic
statement)	{	code	to	be	run	if	the	logic	statement	is	true}	if(logic	statement)	{	code	to	be	run	if	the	logic	statement	is	true}	}	A	nested	if	statement	is	one	or	more	if	statements	"nested"	inside	of	another	if	statement.	If	the	parent	if	statement	is	true,	then	the	code	looks	at	each	of	the	nested	if	statements	and	executes	any	that	are	true.	If	the	parent	if
statement	is	false,	then	none	of	the	nested	statements	will	execute.	More	Logical	Operators:if(potentiometer	>	0	&&	potentiometer	These	if	statements	are	checking	for	two	conditions	by	using	the	AND	(&&)	operator.	In	this	line,	the	if	statement	will	only	be	true	if	the	value	of	the	variable	potentiometer	is	greater	than	0	AND	if	the	value	is	less	than
or	equal	to	150.	By	using	&&,	the	program	allows	the	LED	to	have	many	color	states.	Defining	a	Function:void	function_name	()	{	code	to	run	inside	function	}	This	simple	version	of	a	function	executes	the	code	inside	the	curly	brackets	whenever	the	name	is	written	in	the	main	program.	Calling	a	Function:function_name();	Calls	a	function	that	you
have	created.	In	a	later	circuit,	you	will	learn	how	to	make	more	complicated	functions	that	take	data	from	the	main	program	(these	pieces	of	data	are	called	parameters).	ChallengeDescription	Add	more	colorsYou	can	create	many	more	colors	with	the	RGB	LED.	Use	the	analogWrite()	function	to	blend	different	values	of	red,	green	and	blue	together
to	make	even	more	colors.	You	can	divide	the	potentiometer	value	up	more	and	make	more	nested	if	statements	so	that	you	can	have	more	colors	as	you	twist	the	knob.	Multi	color	blinkTry	using	delays	and	multiple	color	functions	to	have	your	RGB	LED	change	between	multiple	colors.	Change	the	thresholdTry	setting	your	threshold	variable	by
reading	the	value	of	a	potentiometer	with	analogRead().	By	turning	the	potentiometer,	you	can	then	change	the	threshold	level	and	adjust	your	night-light	for	different	rooms.	Fading	the	LEDTry	using	a	loop	with	the	analogWrite()	to	get	your	LED	to	pulse	gently	or	smoothly	transition	between	colors.	ProblemSolution	The	LED	never	turns	on	or
offOpen	the	Serial	Monitor	in	Arduino	and	make	sure	that	your	photoresistor	is	returning	values	between	0	and	1023.	Try	covering	the	photoresistor;	the	values	should	change.	If	they	do	not	change,	check	the	wiring	of	the	photoresistor.	If	your	photoresistor	is	working	correctly,	make	sure	that	your	threshold	variable	sits	in	between	the	value	that
the	photoresistor	reads	when	it	is	bright	and	the	value	that	the	photoresistor	reads	when	it	is	dark	(e.g.,	bright	=	850,	dark	=	600,	threshold	=	700).	My	LED	doesn’t	show	the	colors	that	I	expectMake	sure	that	all	three	of	the	pins	driving	your	RGB	LED	are	set	to	OUTPUT,	using	the	pinMode()	command	in	the	setup	section	of	the	code.	Then	make
sure	that	each	LED	is	wired	properly.	Nothing	is	printing	in	the	Serial	MonitorTry	unplugging	your	USB	cable	and	plugging	it	back	in.	In	the	Arduino	IDE,	go	to	Tools	>	Port,	and	make	sure	that	you	select	the	right	port.	Walkthrough	Videos!	For	each	circuit	in	this	project,	you	can	also	follow	along	with	the	SIK	walkthrough	videos.	Check	out	the
following	video	for	more	information.	In	Project	2,	you	will	venture	into	the	world	of	buttons	and	buzzers	while	building	your	own	Simon	Says	game!	Simon	Says	is	a	game	in	which	the	LEDs	flash	a	pattern	of	red,	green,	yellow	and	blue	blinks,	and	the	user	must	recreate	the	pattern	using	color-coded	buttons	before	the	timer	runs	out.	New
Components	Introduced	in	This	Project	Each	of	the	components	listed	below	will	be	described	in	more	detail	as	you	progress	through	each	circuit.	New	Concepts	Introduced	in	This	Project	Each	of	the	concepts	listed	below	will	be	described	in	more	detail	as	you	progress	through	each	circuit.	Arrays	Binary	Digital	Inputs	Pull-up	Resistors	For	Loops
Measuring	Elapsed	Time	You	Will	Learn	How	to	make	tones	with	a	buzzer	How	to	read	a	button	using	digital	inputs	How	to	program	a	game	In	this	circuit,	you'll	use	the	RedBoard	and	a	small	buzzer	to	make	music,	and	you'll	learn	how	to	program	your	own	songs	using	arrays.	Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this
circuit:	New	Components	Buzzer	The	buzzer	uses	a	small	magnetic	coil	to	vibrate	a	metal	disc	inside	a	plastic	housing.	By	pulsing	electricity	through	the	coil	at	different	rates,	different	frequencies	(pitches)	of	sound	can	be	produced.	Attaching	a	potentiometer	to	the	output	allows	you	to	limit	the	amount	of	current	moving	through	the	buzzer	and
lower	its	volume.	New	Concepts	Reset	Button	The	RedBoard	has	a	built-in	reset	button.	This	button	will	reset	the	board	and	start	the	code	over	from	the	beginning,	running	what	is	in	setup()	and	then	loop().	Tone	Function	To	control	the	buzzer,	you	will	use	the	tone	function.	This	function	is	similar	to	PWM	in	that	it	generates	a	wave	that	is	of	a
certain	frequency	on	the	specified	pin.	The	frequency	and	duration	can	both	be	passed	to	the	tone()	function	when	calling	it.	To	turn	the	tone	off,	you	need	to	call	noTone()	or	pass	a	duration	of	time	for	it	to	play	and	then	stop.	Unlike	PWM,	tone()	can	be	used	on	any	digital	pin.	Arrays	Arrays	are	used	like	variables,	but	they	can	store	multiple	values.
The	simplest	array	is	just	a	list.	Imagine	that	you	want	to	store	the	frequency	for	each	note	of	the	C	major	scale.	We	could	make	seven	variables	and	assign	a	frequency	to	each	one,	or	we	could	use	an	array	and	store	all	seven	in	the	same	array,	as	shown	below.	To	refer	to	a	specific	value	in	the	array,	an	index	number	is	used.	Arrays	are	indexed	from
0.	For	example,	to	call	the	first	element	in	the	array,	use	array_name[0];;	to	call	the	second	element,	use	array_name[1];	and	so	on.	Musical	Note	Frequency	(Hz)	Using	Variables	Using	an	Array	A	220	aFrequency	frequency[0]	B	247	bFrequency	frequency[1]	C	261	cFrequency	frequency[2]	D	294	dFrequency	frequency[3]	E	330	eFrequency
frequency[4]	F	349	fFrequency	frequency[5]	G	392	gFrequency	frequency[6]	Hardware	Hookup	Polarized	Components	Pay	special	attention	to	the	component’s	markings	indicating	how	to	place	it	on	the	breadboard.	Polarized	components	can	only	be	connected	to	a	circuit	in	one	direction.	The	buzzer	is	polarized.	To	see	which	leg	is	positive	and
which	is	negative,	flip	the	buzzer	over	and	look	at	the	markings	underneath.	Keep	track	of	which	pin	is	where,	as	they	will	be	hard	to	see	once	inserted	into	the	breadboard.	There	is	also	text	on	the	positive	side	of	the	buzzer,	along	with	a	tiny	(+)	symbol.	Volume	Knob	All	of	the	circuits	in	Project	2	make	use	of	a	potentiometer	as	a	rudimentary	volume
knob.	Notice	that	only	two	of	the	potentiometer's	legs	are	used	in	these	circuits.	In	these	instances,	the	potentiometer	is	acting	as	a	variable	resistor,	limiting	the	amount	of	current	flowing	to	the	speaker	and	thus	affecting	the	volume	as	you	turn	the	knob.	This	is	similar	to	the	current-limiting	resistor	used	to	limit	current	to	the	LED	in	circuit	1A	---
only	this	time	the	resistance	is	variable.	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on	the	image	for	a	closer	look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Breadboard	Buzzer	J1
(Buzzer	+)	J3	(Buzzer	-)	Potentiometer	B1	B2	B3	Jumper	Wire	GND	GND	Rail	(-)	Jumper	Wire	Digital	Pin	10	F1	Jumper	Wire	E2	GND	Rail	(-)	Jumper	Wire	E1	F3	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-
master	>	SIK_Circuit_2A-Buzzer	You	can	also	copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	2A	-	Buzzer	Play	notes	using	a	buzzer	connected	to	pin	10	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code
is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	int	speakerPin	=	10;	//the	pin	that	buzzer	is	connected	to	void	setup()	{	pinMode(speakerPin,	OUTPUT);	//set	the	output	pin	for	the	speaker	}	void	loop()	{	play('g',	2);	//ha	play('g',	1);	//ppy	play('a',	4);	//birth	play('g',	4);	//day	play('C',	4);	//to
play('b',	4);	//you	play('	',	2);	//pause	for	2	beats	play('g',	2);	//ha	play('g',	1);	//ppy	play('a',	4);	//birth	play('g',	4);	//day	play('D',	4);	//to	play('C',	4);	//you	play('	',	2);	//pause	for	2	beats	play('g',	2);	//ha	play('g',	1);	//ppy	play('G',	4);	//birth	play('E',	4);	//day	play('C',	4);	//dear	play('b',	4);	//your	play('a',	6);	//name	play('	',	2);	//pause	for	2	beats	play('F',	2);
//ha	play('F',	1);	//ppy	play('E',	4);	//birth	play('C',	4);	//day	play('D',	4);	//to	play('C',	6);	//you	while	(true)	{}	//get	stuck	in	this	loop	forever	so	that	the	song	only	plays	once	}	void	play(char	note,	int	beats)	{	int	numNotes	=	14;	//	number	of	notes	in	our	note	and	frequency	array	(there	are	15	values,	but	arrays	start	at	0)	//Note:	these	notes	are	C	major
(there	are	no	sharps	or	flats)	//this	array	is	used	to	look	up	the	notes	char	notes[]	=	{	'c',	'd',	'e',	'f',	'g',	'a',	'b',	'C',	'D',	'E',	'F',	'G',	'A',	'B',	'	'};	//this	array	matches	frequencies	with	each	letter	(e.g.	the	4th	note	is	'f',	the	4th	frequency	is	175)	int	frequencies[]	=	{131,	147,	165,	175,	196,	220,	247,	262,	294,	330,	349,	392,	440,	494,	0};	int
currentFrequency	=	0;	//the	frequency	that	we	find	when	we	look	up	a	frequency	in	the	arrays	int	beatLength	=	150;	//the	length	of	one	beat	(changing	this	will	speed	up	or	slow	down	the	tempo	of	the	song)	//look	up	the	frequency	that	corresponds	to	the	note	for	(int	i	=	0;	i	<	numNotes;	i++)	//	check	each	value	in	notes	from	0	to	14	{	if	(notes[i]	==
note)	//	does	the	letter	passed	to	the	play	function	match	the	letter	in	the	array?	{	currentFrequency	=	frequencies[i];	//	Yes!	Set	the	current	frequency	to	match	that	note	}	}	//play	the	frequency	that	matched	our	letter	for	the	number	of	beats	passed	to	the	play	function	tone(speakerPin,	currentFrequency,	beats	*	beatLength);	delay(beats	*
beatLength);	//wait	for	the	length	of	the	tone	so	that	it	has	time	to	play	delay(50);	//a	little	delay	between	the	notes	makes	the	song	sound	more	natural	}	/*	CHART	OF	FREQUENCIES	FOR	NOTES	IN	C	MAJOR	Note	Frequency	(Hz)	c	131	d	147	e	165	f	175	g	196	a	220	b	247	C	262	D	294	E	330	F	349	G	392	A	440	B	494	*/	What	You	Should	See	When
the	program	begins,	a	song	will	play	from	the	buzzer	once.	To	replay	the	song,	press	the	reset	button	on	the	RedBoard.	Use	the	potentiometer	to	adjust	the	volume.	Program	Overview	Inside	the	main	loop:	Play	the	first	note	for	x	number	of	beats	using	the	play	function.	a.	(Inside	the	play	function:)	Take	the	note	passed	to	the	play	function	and
compare	it	to	each	letter	in	the	notes	array.	When	you	find	a	note	that	matches,	remember	the	index	position	of	that	note	(e.g.,	6th	entry	in	the	notes	array).	b.	Get	a	frequency	from	the	frequency	array	that	has	the	same	index	as	the	note	that	matched	(e.g.,	the	6th	frequency).	c.	Play	that	frequency	for	the	number	of	beats	passed	to	the	play	function.
Play	the	second	note	using	the	play	function	...and	so	on.	Code	to	Note	CodeDescription	Character	Variables:void	play(char	note,	int	beats)The	char,	or	character,	variable	to	store	character	values.	For	example,	in	this	sketch,	the	play()	function	gets	passed	two	variables,	a	character	variable	that	represents	the	mucial	note	we	want	to	play	and	an
integer	variable	that	represents	how	long	to	play	that	note.	A	second	array	takes	the	character	variable	and	associates	a	frequency	value	to	it.	This	makes	programming	a	song	easier	as	you	can	just	reference	the	character	and	not	the	exact	frequency.	Tone	Function:tone(pin,	frequency,	duration);The	tone()	function	will	pulse	power	to	a	pin	at	a
specific	frequency.	The	duration	controls	how	long	the	sound	will	play.	Tone	can	be	used	on	any	digital	pin.	Declaring	an	Array:arrray_name[array_size];	or	arrray_name[]	=	{array	elements};To	declare	an	array,	you	must	give	it	a	name,	then	either	tell	Arduino	how	many	positions	the	array	will	have	or	assign	a	list	of	values	to	the	array.	Calling	an
Array:array_name[index	#];To	call	one	of	the	values	in	an	array,	simply	type	the	name	of	the	array	and	the	index	of	the	value.	You	can	use	a	variable	instead	of	a	number	in	between	the	square	brackets.	Don't	forget	the	index	starts	at	0,	not	1,	so	to	call	the	first	element,	use	array_name[0];.	Coding	Challenges	ChallengeDescription	Change	the	tempo
of	the	songExperiment	with	the	beatLength;	variable	to	change	the	tempo	of	the	song.	Make	your	own	songTry	changing	the	notes	to	make	a	different	song.	Spaces	"	"	can	be	used	for	rests	in	the	song.	Troubleshooting	ProblemSolution	The	song	is	too	quiet	or	too	loudTurn	the	potentiometer	to	adjust	the	volume.	No	sound	is	playingTry	pressing	the
reset	button	on	the	RedBoard.	If	that	doesn’t	work,	check	your	wiring	of	the	buzzer.	It's	easy	to	misalign	a	pin	with	a	jumper	wire.	Learn	about	digital	inputs	and	buttons	as	you	build	your	own	digital	trumpet!	Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this	circuit:	New	Components	Buttons	Buttons,	also	known	as
momentary	switches,	are	switches	that	only	remain	in	their	on	state	as	long	as	they’re	being	actuated,	or	pressed.	Most	often	momentary	switches	are	best	used	for	intermittent	user-input	cases:	reset	button	and	keypad	buttons.	These	switches	have	a	nice,	tactile,	“clicky”	feedback	when	you	press	them.	Note	that	the	different	colors	are	just
aesthetic.	All	of	the	buttons	included	behave	the	same	no	matter	their	color.	New	Concepts	Binary	Number	System	Number	systems	are	the	methods	we	use	to	represent	numbers.	We’ve	all	been	mostly	operating	within	the	comfy	confines	of	a	base-10	number	system,	but	there	are	many	others.	The	base-2	system,	otherwise	known	as	binary,	is
common	when	dealing	with	computers	and	electronics.	There	are	really	only	two	ways	to	represent	the	state	of	anything:	ON	or	OFF,	HIGH	or	LOW,	1	or	0.	And	so,	almost	all	electronics	rely	on	a	base-2	number	system	to	store	and	manipulate	numbers.	The	heavy	reliance	electronics	places	on	binary	numbers	means	it’s	important	to	know	how	the
base-2	number	system	works.	Digital	Input	In	circuit	1A,	you	worked	with	digital	outputs.	This	circuit	focuses	on	digital	inputs.	Digital	inputs	only	care	if	something	is	in	one	of	two	states:	TRUE	or	FALSE,	HIGH	or	LOW,	ON	or	OFF.	Digital	inputs	are	great	for	determining	if	a	button	has	been	pressed	or	if	a	switch	has	been	flipped.	Pull-up	Resistors	A
pull-up	resistor	is	a	small	circuit	that	holds	the	voltage	HIGH	(5V)	on	a	pin	until	a	button	is	pressed,	pulling	the	voltage	LOW	(0V).	The	most	common	place	you	will	see	a	pull-up	resistor	is	when	working	with	buttons.	A	pull-up	resistor	keeps	the	button	in	one	state	until	it	is	pressed.	The	RedBoard	has	built-in	pull-up	resistors,	but	they	can	also	be
added	to	a	circuit	externally.	This	circuit	uses	the	internal	pull-up	resistors,	covered	in	more	detail	in	the	Code	to	Note	section.	Hardware	Hookup	Buttons	are	not	polarized.	However,	they	do	merit	a	closer	look.	Buttons	make	momentary	contact	from	one	connection	to	another,	so	why	are	there	four	legs	on	each	button?	The	answer	is	to	provide	more
stability	and	support	to	the	buttons	in	your	breadboard	circuit.	Each	row	of	legs	is	connected	internally.	When	the	button	is	pressed,	one	row	connects	to	the	other,	making	a	connection	between	all	four	pins.	If	the	button's	legs	don't	line	up	with	the	slots	on	the	breadboard,	rotate	it	90	degrees.	Ready	to	start	hooking	everything	up?	Check	out	the
circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on	the	image	for	a	closer	look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Breadboard	Buzzer	J1	(Buzzer	+)	J3	(Buzzer	-)	Potentiometer	B1	B2	B3	Jumper	Wire	GND	GND	Rail	(-)	Jumper	Wire
Digital	Pin	10	F1	Jumper	Wire	E2	GND	Rail	(-)	Jumper	Wire	E1	F3	Push	Button	D16/D18	G16/G18	Push	Button	D22/D24	G22/G24	Push	Button	D28/D30	G28/G30	Jumper	Wire	Digital	Pin	4	J18	Jumper	Wire	Digital	Pin	3	J24	Jumper	Wire	Digital	Pin	2	J30	Jumper	Wire	J16	GND	Rail	(-)	Jumper	Wire	J22	GND	Rail	(-)	Jumper	Wire	J28	GND	Rail	(-)	In
the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_2B-ButtonTrumpet	You	can	also	copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*
SparkFun	Inventor’s	Kit	Circuit	2B-ButtonTrumpet	Use	3	buttons	plugged	to	play	musical	notes	on	a	buzzer.	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	//set	the	pins	for	the	button
and	buzzer	int	firstKeyPin	=	2;	int	secondKeyPin	=	3;	int	thirdKeyPin	=	4;	int	buzzerPin	=	10;	void	setup()	{	//set	the	button	pins	as	inputs	pinMode(firstKeyPin,	INPUT_PULLUP);	pinMode(secondKeyPin,	INPUT_PULLUP);	pinMode(thirdKeyPin,	INPUT_PULLUP);	//set	the	buzzer	pin	as	an	output	pinMode(buzzerPin,	OUTPUT);	}	void	loop()	{	if
(digitalRead(firstKeyPin)	==	LOW)	{	//if	the	first	key	is	pressed	tone(buzzerPin,	262);	//play	the	frequency	for	c	}	else	if	(digitalRead(secondKeyPin)	==	LOW)	{	//if	the	second	key	is	pressed	tone(buzzerPin,	330);	//play	the	frequency	for	e	}	else	if	(digitalRead(thirdKeyPin)	==	LOW)	{	//if	the	third	key	is	pressed	tone(buzzerPin,	392);	//play	the
frequency	for	g	}	else	{	noTone(buzzerPin);	//if	no	key	is	pressed	turn	the	buzzer	off	}	}	/*	note	frequency	c	262	Hz	d	294	Hz	e	330	Hz	f	349	Hz	g	392	Hz	a	440	Hz	b	494	Hz	C	523	Hz	*/	What	You	Should	See	Different	tones	will	play	when	you	press	different	keys.	Turning	the	potentiometer	will	adjust	the	volume.	Program	Overview	Check	to	see	if	the
first	button	is	pressed.	a.	If	it	is,	play	the	frequency	for	c.	b.	If	it	isn’t,	skip	to	the	next	else	if	statement.	Check	to	see	if	the	second	button	is	pressed.	a.	If	it	is,	play	the	frequency	for	e.	b.	If	it	isn’t,	skip	to	the	next	else	if	statement.	Check	to	see	if	the	second	button	is	pressed.	a.	If	it	is,	play	the	frequency	for	g.	b.	If	it	isn’t,	skip	to	the	next	else	if
statement.	If	none	of	the	if	statements	are	true	a.	Turn	the	buzzer	off.	Code	to	Note	CodeDescription	Internal	Pull-Up	Resistor:pinMode(firstKeyPin,	INPUT_PULLUP);To	declare	a	standard	input,	use	the	line	pinMode(pin_name,	INPUT).	If	you	would	like	to	use	one	of	the	RedBoard's	built-in	pull-up	20kΩ	resistors,	it	would	look	like	this:
pinMode(firstKeyPin,	INPUT_PULLUP);.	The	advantage	of	external	pull-ups	is	being	able	to	choose	a	more	exact	value	for	the	resistor.	Digital	Input:digitalRead(pin);Check	to	see	if	an	input	pin	is	reading	HIGH	(5V)	or	LOW	(0V).	Returns	TRUE	(1)	or	FALSE	(0)	depending	on	the	reading.	Is	Equal	to:if(digitalRead(firstKeyPin)	==	LOW)This	is	another
logical	operator.	The	'is	equal	to'	symbol	(==)	can	be	confusing.	Two	equals	signs	are	equivalent	to	asking,	"Are	these	two	values	equal	to	one	another?"	On	the	other	hand,	one	equals	sign	in	code	is	assigning	a	particular	variable	to	a	value.	Don't	forget	to	add	the	second	equals	sign	if	you	are	comparing	two	values.	Coding	Challenges
ChallengeDescription	Change	the	key	of	each	buttonUse	the	frequency	table	in	the	comment	section	at	the	end	of	the	code	to	change	the	notes	that	each	button	plays.	Play	more	than	three	notes	with	if	statementsBy	using	combinations	of	buttons,	you	can	play	up	to	seven	notes	of	the	scale.	You	can	do	this	in	a	few	ways.	To	get	more	practice	with	if
statements,	try	adding	seven	if	statements	and	using	the	Boolean	AND	(&&)	operator	to	represent	all	of	the	combinations	of	keys.	Play	more	than	three	notes	with	binary	mathYou	can	use	a	clever	math	equation	to	play	more	than	three	notes	with	your	three	keys.	By	multiplying	each	key	by	a	different	number,	then	adding	up	all	of	these	numbers,	you
can	make	a	math	equation	that	produces	a	different	number	for	each	combination	of	keys.	Troubleshooting	ProblemSolution	The	buzzer	is	too	loud	or	too	quietTurn	the	potentiometer	to	adjust	the	volume.	The	RedBoard	thinks	one	key	is	always	pressedCheck	your	wiring.	You	may	have	ground	and	5V	backward	if	one	or	more	buttons	behave	as
though	they're	pressed	all	the	time.	The	buttons	are	not	workingFirst,	make	sure	that	the	wiring	is	correct.	It	is	easy	to	misalign	a	wire	with	a	button	leg.	Second,	make	sure	that	you	have	declared	your	buttons	as	inputs	and	have	enabled	the	internal	pull-up	resistors	with	INPUT_PULLUP.	The	Simon	Says	game	uses	LEDs	to	flash	a	pattern,	which	the

player	must	remember	and	repeat	using	four	buttons.	The	classic	Simon	game	has	been	a	hit	since	the	1980s.	Now	you	can	build	your	own!	Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this	circuit:	New	Concepts	For	Loops	For	loops	repeat	a	section	of	code	a	set	number	of	times.	The	loop	works	by	using	a	counter	(usually
programmers	use	the	letter	“i”	for	this	variable)	that	increases	each	loop	until	it	reaches	a	stop	value.	Here’s	an	example	of	a	simple	for	loop:	language:c	for	(int	i	=	0;	i	<	5;	i++){	Serial.print(i);	}	The	for	loop	takes	three	parameters	in	the	brackets,	separated	by	semicolons.	The	first	parameter	is	the	start	value.	In	this	case,	integer	i	starts	at	0.	The
second	value	is	the	stop	condition.	In	this	case,	we	stop	the	loop	when	i	is	no	longer	less	than	5	(i	<	5	is	no	longer	true).	The	final	parameter	is	an	increment	value.	i++	is	shorthand	for	increase	i	by	1	each	time,	but	you	could	also	increase	i	by	different	amounts.	This	loop	would	repeat	five	times.	Each	time	it	would	run	the	code	in	between	the
brackets,	which	prints	the	value	of	i	to	the	serial	monitor.	Measuring	Durations	of	Time	With	millis()	The	RedBoard	has	a	built-in	clock	that	keeps	accurate	time.	You	can	use	the	millis()	command	to	see	how	many	milliseconds	have	passed	since	the	RedBoard	was	last	powered.	By	storing	the	time	when	an	event	happens	and	then	subtracting	the
current	time,	you	can	measure	the	number	of	milliseconds	(and	thus	seconds)	that	have	passed.	This	sketch	uses	this	function	to	set	a	time	limit	for	repeating	the	pattern.	Custom	Functions	This	sketch	uses	several	user-defined	functions.	These	functions	perform	operations	that	are	needed	many	times	in	the	program	(for	example,	reading	which
button	is	currently	pressed	or	turning	all	of	the	LEDs	off).	Functions	are	essential	to	make	more	complex	programs	readable	and	compact.	Hardware	Hookup	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on
the	image	for	a	closer	look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Breadboard	Buzzer	J1	(Buzzer	+)	J3	(Buzzer	-)	Potentiometer	B1	B2	B3	Jumper	Wire	GND	GND	Rail	(-)	Jumper	Wire	Digital	Pin	10	F1	Jumper	Wire	E2	GND	Rail	(-)	Jumper	Wire	E1	F3	Push	Button	D10/D12	G10/G12	Push	Button	D16/D18	G16/G18	Push	Button
D22/D24	G22/G24	Push	Button	D28/D30	G28/G30	Jumper	Wire	Digital	Pin	8	J12	Jumper	Wire	Digital	Pin	6	J18	Jumper	Wire	Digital	Pin	4	J24	Jumper	Wire	Digital	Pin	2	J30	Jumper	Wire	J10	GND	Rail	(-)	Jumper	Wire	J16	GND	Rail	(-)	Jumper	Wire	J22	GND	Rail	(-)	Jumper	Wire	J28	GND	Rail	(-)	Blue	LED	H7	LED	(+)	H8	LED	(-)	Green	LED	H13
LED	(+)	H14	LED	(-)	Yellow	LED	H19	LED	(+)	H20	LED	(-)	Red	LED	H25	LED	(+)	H26	LED	(-)	Jumper	Wire	Digital	Pin	9	J7	Jumper	Wire	Digital	Pin	7	J13	Jumper	Wire	Digital	Pin	5	J19	Jumper	Wire	Digital	Pin	3	J25	330Ω	Resistor(orange,	orange,	brown)	J8	GND	Rail	(-)	330Ω	Resistor(orange,	orange,	brown)	J14	GND	Rail	(-)	330Ω
Resistor(orange,	orange,	brown)	j20	GND	Rail	(-)	330Ω	Resistor(orange,	orange,	brown)	J26	GND	Rail	(-)	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_2C-SimonSays	You	can	also	copy
and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	2C-Simon	Says	The	Simon	Says	game	flashes	a	pattern	using	LED	lights,	then	the	player	must	repeat	the	pattern.	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This
code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	//set	the	pins	where	the	buttons,	LEDs	and	buzzer	connect	int	button[]	=	{2,	4,	6,	8};	//red	is	button[0],	yellow	is	button[1],	green	is	button[2],	blue	is	button[3]	int	led[]	=	{3,	5,	7,	9};	//red	is	led[0],	yellow	is	led[1],	green	is	led[2],	blue	is
led[3]	int	tones[]	=	{262,	330,	392,	494};	//tones	to	play	with	each	button	(c,	e,	g,	b)	int	roundsToWin	=	10;	//number	of	rounds	the	player	has	to	play	before	they	win	the	game	(the	array	can	only	hold	up	to	16	rounds)	int	buttonSequence[16];	//make	an	array	of	numbers	that	will	be	the	sequence	that	the	player	needs	to	remember	int	buzzerPin	=	10;
//pin	that	the	buzzer	is	connected	to	int	pressedButton	=	4;	//a	variable	to	remember	which	button	is	being	pressed.	4	is	the	value	if	no	button	is	being	pressed.	int	roundCounter	=	1;	//keeps	track	of	what	round	the	player	is	on	long	startTime	=	0;	//timer	variable	for	time	limit	on	button	press	long	timeLimit	=	2000;	//time	limit	to	hit	a	button	boolean
gameStarted	=	false;	//variable	to	tell	the	game	whether	or	not	to	play	the	start	sequence	void	setup()	{	//set	all	of	the	button	pins	to	input_pullup	(use	the	built-in	pull-up	resistors)	pinMode(button[0],	INPUT_PULLUP);	pinMode(button[1],	INPUT_PULLUP);	pinMode(button[2],	INPUT_PULLUP);	pinMode(button[3],	INPUT_PULLUP);	//set	all	of	the
LED	pins	to	output	pinMode(led[0],	OUTPUT);	pinMode(led[1],	OUTPUT);	pinMode(led[2],	OUTPUT);	pinMode(led[3],	OUTPUT);	pinMode(buzzerPin,	OUTPUT);	//set	the	buzzer	pin	to	output	}	void	loop()	{	if	(gameStarted	==	false)	{	//if	the	game	hasn't	started	yet	startSequence();	//flash	the	start	sequence	roundCounter	=	0;	//reset	the	round
counter	delay(1500);	//wait	a	second	and	a	half	gameStarted	=	true;	//set	gameStarted	to	true	so	that	this	sequence	doesn't	start	again	}	//each	round,	start	by	flashing	out	the	sequence	to	be	repeated	for	(int	i	=	0;	i	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_3B-DistanceSensor	You	can	also	copy	and	paste	the	following	code	into	the	Arduino
IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	3B-Distance	Sensor	Control	the	color	of	an	RGB	LED	using	an	ultrasonic	distance	sensor.	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is	completely	free	for	any	use.	View	circuit	diagram	and
instructions	at:	Download	drawings	and	code	at:	*/	const	int	trigPin	=	11;	//connects	to	the	trigger	pin	on	the	distance	sensor	const	int	echoPin	=	12;	//connects	to	the	echo	pin	on	the	distance	sensor	const	int	redPin	=	3;	//pin	to	control	the	red	LED	inside	the	RGB	LED	const	int	greenPin	=	5;	//pin	to	control	the	green	LED	inside	the	RGB	LED	const	int
bluePin	=	6;	//pin	to	control	the	blue	LED	inside	the	RGB	LED	float	distance	=	0;	//stores	the	distance	measured	by	the	distance	sensor	void	setup()	{	Serial.begin	(9600);	//set	up	a	serial	connection	with	the	computer	pinMode(trigPin,	OUTPUT);	//the	trigger	pin	will	output	pulses	of	electricity	pinMode(echoPin,	INPUT);	//the	echo	pin	will	measure	the
duration	of	pulses	coming	back	from	the	distance	sensor	//set	the	RGB	LED	pins	to	output	pinMode(redPin,	OUTPUT);	pinMode(greenPin,	OUTPUT);	pinMode(bluePin,	OUTPUT);	}	void	loop()	{	distance	=	getDistance();	//variable	to	store	the	distance	measured	by	the	sensor	Serial.print(distance);	//print	the	distance	that	was	measured	Serial.println("
in");	//print	units	after	the	distance	if	(distance	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_4A-LCDHelloWorld	You	can	also	copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	4A-HelloWorld	The	LCD	will	display	the	words	"Hello	World"	and	show	how
many	seconds	have	passed	since	the	RedBoard	was	last	reset.	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	#include	//the	liquid	crystal	library	contains	commands	for	printing	to	the
display	LiquidCrystal	lcd(13,	12,	11,	10,	9,	8);	//	tell	the	RedBoard	what	pins	are	connected	to	the	display	void	setup()	{	lcd.begin(16,	2);	//tell	the	lcd	library	that	we	are	using	a	display	that	is	16	characters	wide	and	2	characters	high	lcd.clear();	//clear	the	display	}	void	loop()	{	lcd.setCursor(0,	0);	//set	the	cursor	to	the	0,0	position	(top	left	corner)
lcd.print("Hello,	world!");	//print	hello,	world!	starting	at	that	position	lcd.setCursor(0,	1);	//move	the	cursor	to	the	first	space	of	the	bottom	row	lcd.print(millis()	/	1000);	//print	the	number	of	seconds	that	have	passed	since	the	last	reset	}	What	You	Should	See	The	LCD	screen	will	show	“Hello,	world!”	On	the	row	below,	a	counter	will	count	every
second	that	passes.	Contrast	Adjust	If	you	are	not	seeing	any	characters,	are	seeing	barely	visible	characters,	or	see	just	white	rectangles,	then	you	need	to	adjust	the	contrast.	Twist	the	potentiometer	very	slowly	until	you	can	clearly	read	the	display.	If	you	reach	the	end	of	the	potentiometer's	rotation,	try	twisting	in	the	opposite	direction.	A	display
that	needs	the	contrast	adjusted.	Note	the	white	rectangles.	Program	Overview	Import	the	LCD	library.	Make	an	LCD	object	called	“lcd”	that	will	be	controlled	using	pins	8,	9,	10,	11,	12	and	13.	“Begin”	the	LCD.	This	sets	the	dimensions	of	the	LCD	that	you	are	working	with	(16	x	2).	It	needs	to	be	called	before	any	other	commands	from	the	LCD
library	are	used.	Clear	the	display.	Set	the	cursor	to	the	top	left	corner	lcd.setCursor(0,0);,	then	print	“Hello,	world!"	Move	the	cursor	to	the	first	space	of	the	lower	line	lcd.setCursor(0,1);,	then	print	the	number	of	seconds	that	have	passed	since	the	RedBoard	was	last	reset.	Code	to	Note	CodeDescription	LCD	Library:#include	Includes	the	liquid
crystal	library	into	your	program.	LCD	Library	Instance:LiquidCrystal	LCD_name(RS_pin,	enable_pin,	d4,	d5,	d6,	d7);As	with	servos,	you	need	to	create	an	LCD	object	and	give	it	a	name	(you	can	make	more	than	one).	The	numbers	in	the	brackets	are	pins	on	the	RedBoard	that	connect	to	specific	pins	on	the	LCD.	LCD	Begin:lcd.begin(16,	2);This	line
initializes	the	LCD	object	and	tells	the	program	the	LCD's	dimensions.	In	this	case	it	is	16	characters	by	2	characters.	LCD	Clear:lcd.clear();This	method	clears	the	pixels	on	the	display.	LCD	Cursor:lcd.setCursor(0,0);Move	the	cursor	to	a	point	on	the	16x2	grid	of	characters.	Text	that	you	write	to	the	LCD	will	start	from	the	cursor.	This	line	is	starting
back	at	position	(0,0).	LCD	Print	:lcd.print("Hello,	world!");Prints	a	string	of	characters	to	the	LCD	starting	at	the	cursor	position.	Coding	Challenges	ChallengeDescription	Change	the	messageTry	changing	the	code	to	display	another	message.	Show	hours,	minutes	and	secondsTry	adding	some	code	so	that	the	display	shows	the	hours,	minutes	and
seconds	that	have	passed	since	the	RedBoard	was	last	reset.	Count	button	pressesBy	adding	a	button	to	the	circuit,	you	can	count	the	number	of	times	the	button	was	pressed	or	have	the	button	change	what	the	LCD	is	displaying.	There	could	be	many	pages	of	information.	Troubleshooting	ProblemSolution	The	screen	is	blank	or	flickeringAdjust	the
contrast	by	twisting	the	potentiometer.	If	it’s	incorrectly	adjusted,	you	won’t	be	able	to	read	the	text.	Also,	check	the	potentiometer,	and	make	sure	it's	connected	correctly.	Not	working	at	allDouble	check	the	circuit's	wiring.	There	are	a	lot	of	wires	in	this	circuit,	and	it's	easy	to	mix	up	one	or	two.	Rectangles	in	first	rowIf	you	see	16	rectangles	(like
“█”)	on	the	first	row,	it	may	be	due	to	the	jumper	wires	being	loose	on	the	breadboard.	This	is	normal	and	can	happen	with	other	LCDs	wired	in	parallel	with	a	microcontroller.	Make	sure	that	the	wires	are	fully	inserted	into	the	breadboard,	then	try	pressing	the	reset	button	and	adjusting	the	contrast	using	the	potentiometer.	Still	not	working?Jumper
wires	unfortunately	can	go	"bad"	from	getting	bent	too	much.	The	copper	wire	inside	can	break,	leaving	an	open	connection	in	your	circuit.	If	you	are	certain	that	your	circuit	is	wired	correctly	and	that	your	code	is	error-free	and	uploaded	but	you	are	still	encountering	issues,	try	replacing	one	or	more	of	the	jumper	wires	for	the	component	that	is	not
working.	Want	to	create	a	DIY	environmental	monitor	or	weather	station?	You	can	use	a	small,	low-cost	sensor	like	the	TMP36	to	make	devices	that	track	and	respond	to	temperature.	In	this	activity	you	will	also	use	the	LCD	screen	to	display	sensor	readings,	a	common	use	for	LCDs	in	electronics	projects.	Parts	Needed	Grab	the	following	quantities
of	each	part	listed	to	build	this	circuit:	New	Components	TMP36	Temperature	Sensor	This	temperature	sensor	has	three	legs.	One	connects	to	5V,	one	to	ground,	and	the	voltage	output	from	the	third	leg	varies	proportionally	to	changes	in	temperature.	By	doing	some	simple	math	with	this	voltage	we	can	measure	temperature	in	degrees	Celsius	or
Fahrenheit.	New	Concepts	Algorithms	An	algorithm	is	a	process	used	in	order	to	achieve	a	desired	result.	Often,	the	information	needed	to	create	an	algorithm	lives	in	the	part's	datasheet.	This	sketch	uses	a	few	formulas	to	turn	a	voltage	value	into	a	temperature	value,	making	them	all	part	of	the	larger	temperature-retrieving	algorithm.	The	first
formula	takes	the	voltage	read	on	analog	pin	0	and	multiplies	it	to	get	a	voltage	value	from	0V--5V:	language:c	voltage	=	analogRead(A0)	*	0.004882813;	The	number	we	are	multiplying	by	comes	from	dividing	5V	by	the	number	of	samples	the	analog	pin	can	read	(1024),	so	we	get:	5	/	1024	=	0.004882813.	The	second	formula	takes	that	0--5V	value
and	calculates	degrees	Centigrade:	language:c	degreesC	=	(voltage	-	0.5)	*	100.0;	The	reason	0.5V	is	subtracted	from	the	calculated	voltage	is	because	there	is	a	0.5V	offset,	mentioned	on	page	8	of	the	TMP36	datasheet.	It's	then	multiplied	by	100	to	get	a	value	that	matches	temperature.	The	last	formula	takes	the	Centigrade	temperature	and
converts	it	to	a	Fahrenheit	temperature	using	the	standard	conversion	formula:	language:c	degreesF	=	degreesC	*	(9.0/5.0)	+	32.0;	Together,	these	three	formulas	make	up	the	algorithm	that	converts	voltage	to	degrees	Fahrenheit.	Hardware	Hookup	Polarized	Components	Pay	special	attention	to	the	component’s	markings	indicating	how	to	place	it
on	the	breadboard.	Polarized	components	can	only	be	connected	to	a	circuit	in	one	direction.	The	temperature	sensor	is	polarized	and	can	only	be	inserted	in	one	direction.	See	below	for	the	pin	outs	of	the	temperature	sensor.	Pay	very	close	attention	to	the	markings	on	each	side	as	you	insert	it	into	your	circuit.	Heads	up!	Double	check	the	polarity	of
the	TMP36	temperature	sensor	before	powering	the	RedBoard.	It	can	become	very	hot	if	it	is	inserted	backward!	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on	the	image	for	a	closer	look.	Hookup	Table
Component	RedBoard	Breadboard	Breadboard	Breadboard	Jumper	Wire	5V	5V	Rail	(+)	Jumper	Wire	GND	GND	Rail	(-)	LCD	A15-A30	(Pin	1	on	A15)	Jumper	Wire	E30	GND	Rail	(-)	Jumper	Wire	E29	5V	Rail	(+)	Jumper	Wire	Digital	Pin	8	E28	Jumper	Wire	Digital	Pin	9	E27	Jumper	Wire	Digital	Pin	10	E26	Jumper	Wire	Digital	Pin	11	E25	Jumper	Wire
Digital	Pin	12	E20	Jumper	Wire	E19	GND	Rail	(-)	Jumper	Wire	Digital	Pin	13	E18	Jumper	Wire	E16	5V	Rail	(+)	Jumper	Wire	E15	GND	Rail	(-)	Potentiometer	A8	A9	A10	Jumper	Wire	E9	E17	Jumper	Wire	E8	GND	Rail	(-)	Jumper	Wire	E10	5V	Rail	(+)	TMP36	Temperature	Sensor	A1	(GND)	A2	(Signal)	A3	(V+)	Jumper	Wire	E1	GND	Rail	(-)	Jumper
Wire	Analog	Pin	0	(A0)	E2	Jumper	Wire	E3	5V	Rail	(+)	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_4B-TemperatureSensor	You	can	also	copy	and	paste	the	following	code	into	the
Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	4B	-	Temperature	Sensor	The	LCD	will	display	readings	from	a	temperature	sensor	in	degrees	Celsius	and	Fahrenheit.	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is	completely	free	for	any
use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	#include	//the	liquid	crystal	library	contains	commands	for	printing	to	the	display	LiquidCrystal	lcd(13,	12,	11,	10,	9,	8);	//	tell	the	RedBoard	what	pins	are	connected	to	the	display	float	voltage	=	0;	//the	voltage	measured	from	the	TMP36	float	degreesC	=	0;	//the
temperature	in	Celsius,	calculated	from	the	voltage	float	degreesF	=	0;	//the	temperature	in	Fahrenheit,	calculated	from	the	voltage	void	setup()	{	lcd.begin(16,	2);	//tell	the	lcd	library	that	we	are	using	a	display	that	is	16	characters	wide	and	2	characters	high	lcd.clear();	//clear	the	display	}	void	loop()	{	voltage	=	analogRead(A0)	*	0.004882813;
//convert	the	analog	reading,	which	varies	from	0	to	1023,	back	to	a	voltage	value	from	0-5	volts	degreesC	=	(voltage	-	0.5)	*	100.0;	//convert	the	voltage	to	a	temperature	in	degrees	Celsius	degreesF	=	degreesC	*	(9.0	/	5.0)	+	32.0;	//convert	the	voltage	to	a	temperature	in	degrees	Fahrenheit	lcd.clear();	//clear	the	LCD	lcd.setCursor(0,	0);	//set	the
cursor	to	the	top	left	position	lcd.print("Degrees	C:	");	//print	a	label	for	the	data	lcd.print(degreesC);	//print	the	degrees	Celsius	lcd.setCursor(0,	1);	//set	the	cursor	to	the	lower	left	position	lcd.print("Degrees	F:	");	//Print	a	label	for	the	data	lcd.print(degreesF);	//print	the	degrees	Fahrenheit	delay(1000);	//delay	for	1	second	between	each	reading
(this	makes	the	display	less	noisy)	}	What	You	Should	See	The	LCD	will	show	the	temperature	in	Celsius	and	Fahrenheit.	The	temperature	readings	will	update	every	second.	An	easy	way	to	see	the	temperature	change	is	to	press	your	finger	to	the	sensor.	Program	Overview	Get	the	analog	value	from	the	TMP36	and	convert	it	back	to	a	voltage
between	0	and	5V.	Calculate	the	degrees	Celsius	from	this	voltage.	Calculate	the	degrees	Fahrenheit	from	this	voltage.	Clear	the	LCD.	Print	the	Degrees	C	with	a	label	on	the	first	row.	Print	the	Degrees	F	with	a	label	on	the	second	row.	Wait	for	a	second	before	taking	the	next	reading.	Code	to	Note	CodeDescription	Voltage	Conversion	Algorithms
Many	of	the	sensors	that	you	will	use	with	your	microcontroller	work	by	changing	a	voltage	in	some	predictable	way	in	response	to	a	property	of	the	world	(like	temperature,	light	or	magnetic	fields).	Often,	you	will	need	to	build	an	algorithm	that	converts	these	voltages	to	the	desired	value	and	units.	The	temperature	sensor	is	a	great	example	of	this
code.	We	use	three	equations	to	convert	a	voltage	value	into	degrees	in	C	and	F.	voltage	=	analogRead(A0)	*	0.004882813;	degreesC	=	(voltage	-	0.5)	*	100.0;	degreesF	=	degreesC	*	(9.0/5.0)	+	32.0;	Coding	Challenges	ChallengeDescription	Display	the	temperature	in	degrees	KelvinTry	adding	an	equation	so	that	the	temperature	is	displayed	in
degrees	Kelvin	(you	will	have	to	look	up	the	formula	for	converting	from	degrees	Celsius	or	Fahrenheit	to	Kelvin)	Display	a	bar	graphBy	changing	the	code	you	can	display	the	temperature	as	a	bar	graph	instead	of	a	number.	Display	values	from	another	sensorYou	can	swap	out	the	TMP36	for	a	potentiometer,	photoresistor	or	other	sensor	and	display
the	new	set	of	values.	Add	an	RGB	LEDAdd	an	RGB	LED	that	changes	color	based	on	the	temperature.	Troubleshooting	ProblemSolution	Sensor	is	warm	or	hot	to	the	touchMake	sure	that	you	wired	the	temperature	sensor	correctly.	The	temperature	sensor	can	get	warm	to	the	touch	if	it	is	wired	incorrectly.	Disconnect	your	microcontroller,	rewire
the	circuit,	and	connect	it	back	to	your	computer.	Temperature	value	is	unchangingTry	pinching	the	sensor	with	your	fingers	to	heat	it	up	or	pressing	a	bag	of	ice	against	it	to	cool	it	down.	Also,	make	sure	that	the	wires	are	connected	properly	to	the	temperature	sensor.	Values	not	printing	to	screenIf	you	see	text	but	no	temperature	values,	there
could	be	an	error	in	your	code.	If	you	see	no	text	at	all,	adjust	the	LCD	contrast.	"DIY	Who	Am	I?"	is	based	on	the	popular	Hedbanz	game	or	HeadsUp!	app.	It's	a	fun	party	game	in	which	a	player	holds	an	LCD	screen	to	his/her	forehead	so	that	the	player	can’t	see	the	word(s)	that	appear	on	the	screen.	Other	players	have	to	give	hints,	act	out	charades
or	make	noises	that	will	make	the	player	with	the	LCD	guess	the	word(s).	Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this	circuit:	New	Components	4xAA	Battery	Holder	Included	in	your	kit	is	a	4-cell	AA	battery	holder.	The	5-inch	cable	is	terminated	with	a	standard	barrel	jack	connector.	The	connector	mates	with	the	barrel
jack	on	the	RedBoard,	allowing	you	to	easily	make	your	project	battery	powered.	New	Concepts	Button	Debounce	When	working	with	momentary	buttons,	it	is	usually	necessary	to	add	button	debouncing	to	your	code.	This	is	because	the	code	that	is	meant	to	execute	when	the	button	is	pressed	may	execute	faster	than	you	can	press	and	release	the
button	(microcontrollers	are	fast!).	The	simplest	way	to	debounce	a	button	is	to	add	a	small	delay	to	the	end	of	your	code.	This	sketch	adds	a	500	millisecond	delay	at	the	end	of	loop()	to	account	for	this.	This	simple	addition	will	prevent	a	word	from	getting	skipped	when	you	press	the	button	for	the	game.	For	a	more	complex	example	of	button
debouncing,	in	the	Arduino	IDE	click	File	>	Examples	>	02.Digital	>	Debounce.	Strings	Strings	are	used	to	print	words	and	even	sentences	to	an	LCD	or	the	Serial	Monitor.	Strings	are	actually	just	an	array	of	characters	with	a	null	character	at	the	end	to	let	the	program	know	where	the	end	of	the	string	is.	Arrays	of	Strings	In	circuit	2A	you	used	an
array	of	characters	to	represent	musical	notes.	In	this	program,	you’ll	want	to	make	an	array	of	strings.	Strings	use	multiple	characters	to	make	words,	so	you’ll	need	to	use	a	little	trick	to	put	them	in	an	array.	The	trick	is	to	use	a	pointer.	When	you	declare	your	array,	you’ll	use	an	asterisk	after	the	char	data	type,	as	follows:	language:c	const	char*
arrayOfStrings	=	{“Feynman”	“Sagan”,	“Tyson”,	“Nye”};	Pointers	Pointers	are	an	advanced	programming	topic.	They	can	be	difficult	to	understand	the	first	time	you're	introduced	to	them.	For	now,	think	of	pointers	as	a	variable	that	"points"	to	the	value	contained	in	a	certain	address	in	memory.	In	this	sketch,	the	char*	variable	points	to
arrayOfStrings	address	and	returns	the	character	values	to	create	a	list	of	strings.	Hardware	Hookup	Polarized	Components	Pay	special	attention	to	the	component’s	markings	indicating	how	to	place	it	on	the	breadboard.	Polarized	components	can	only	be	connected	to	a	circuit	in	one	direction.	Batteries	are	polarized.	They	have	a	positive	end	and	a
negative	end.	The	battery	holder	has	images	indicating	which	end	goes	in	which	orientation	for	each	cell.	Ensure	all	the	batteries	are	inserted	correctly	before	plugging	the	battery	holder	into	the	RedBoard.	Battery	Holder	Attachment	To	attach	the	battery	holder	to	the	breadboard	baseplate,	first	cut	two	strips	of	Dual	Lock	that	are	roughly	1	inch	x	1
inch	each,	or	2.5cm	x	2.5cm.	Remove	the	adhesive	backing	and	attach	one	piece	to	the	back	of	the	battery	holder.	Adhere	the	second	piece	to	the	bottom	of	the	breadboard	baseplate	(directly	in	the	middle	is	recommended,	as	this	will	come	into	play	in	Project	5).	Last,	press	the	battery	holder	to	the	baseplate	so	that	the	two	pieces	of	Dual	Lock	snap
together.	Insert	the	batteries	into	the	holder	if	you	have	not	done	so	already.	Remember	that	batteries	are	polarized	and	can	only	go	in	one	way.	Remove	the	battery	pack	while	building	your	circuit.	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having
a	hard	time	seeing	the	circuit?	Click	on	the	image	for	a	closer	look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Breadboard	Jumper	Wire	5V	5V	Rail	(+)	Jumper	Wire	GND	GND	Rail	(-)	LCD	A15-A30	(Pin	1	on	A15)	Jumper	Wire	E30	GND	Rail	(-)	Jumper	Wire	E29	5V	Rail	(+)	Jumper	Wire	Digital	Pin	8	E28	Jumper	Wire	Digital	Pin	9
E27	Jumper	Wire	Digital	Pin	10	E26	Jumper	Wire	Digital	Pin	11	E25	Jumper	Wire	Digital	Pin	12	E20	Jumper	Wire	E19	GND	Rail	(-)	Jumper	Wire	Digital	Pin	13	E18	Jumper	Wire	E16	5V	Rail	(+)	Jumper	Wire	E15	GND	Rail	(-)	Potentiometer	A8	A9	A10	Jumper	Wire	E9	E17	Jumper	Wire	E8	GND	Rail	(-)	Jumper	Wire	E10	5V	Rail	(+)	Buzzer	G6
(Buzzer	+)	G8	(Buzzer	-)	Jumper	Wire	Digital	Pin	6	J6	Jumper	Wire	J8	GND	Rail	(-)	Push	Button	D1/D3	G1/G3	Jumper	Wire	Digital	Pin	2	J1	Jumper	Wire	J3	GND	Rail	(-)	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>
SIK_Guide_Code-master	>	SIK_Circuit_4C-DIYWhoAmI	You	can	also	copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	4C	-	Heads	Up	Game	This	is	a	DIY	version	of	the	popular	Heads	Up	party	game.	To	play,	one	person	resets	the	RedBoard	and	holds	the	LCD
facing	away	from	them	so	that	they	cannot	see	it	(usually	on	their	forehead).	The	display	will	show	a	short	countdown	then	display	random	words.	The	other	player(s)	who	can	see	the	screen	must	yell	out	clues	until	time	runs	out	or	the	player	guesses	what	word	is	on	the	screen.	If	they	guess	correctly,	they	can	press	the	button	on	the	breadboard	and
another	word	will	be	displayed.	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	#include	//the	liquid	crystal	library	contains	commands	for	printing	to	the	display	LiquidCrystal	lcd(13,
12,	11,	10,	9,	8);	//	tell	the	RedBoard	what	pins	are	connected	to	the	display	int	buttonPin	=	2;	//pin	that	the	button	is	connected	to	int	buzzerPin	=	6;	//pin	for	driving	the	buzzer	int	buttonPressTime	=	0;	//variable	to	show	how	much	time	the	player	has	left	to	guess	the	word	(and	press	the	button)	long	timeLimit	=	15000;	//time	limit	for	the	player	to
guess	each	word	long	startTime	=	0;	//used	to	measure	time	that	has	passed	for	each	word	int	roundNumber	=	0;	//keeps	track	of	the	roundNumber	so	that	it	can	be	displayed	at	the	end	of	the	game	const	int	arraySize	=	25;	const	char*	words[arraySize]	=	{"moose",	"beaver",	"bear",	"goose",	"dog",	"cat",	"squirrel",	"bird",	"elephant",	"horse",	"bull",
"giraffe",	"seal",	"bat",	"skunk",	"turtle",	"whale",	"rhino",	"lion",	"monkey",	"frog",	"alligator",	"kangaroo",	"hippo",	"rabbit"	};	//	the	start	value	in	the	sequence	array	must	have	a	value	that	could	never	be	an	index	of	an	array	//	or	at	least	a	value	outside	the	range	of	0	to	the	size	of	the	words	array	-	1;	in	this	case,	it	can't	be	between	0	to	24	int
sequence[]	=	{	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1,	-1};	//start	with	an	array	full	of	-1's	void	setup()	{	pinMode(buttonPin,	INPUT_PULLUP);	//set	the	button	pin	as	an	input	lcd.begin(16,	2);	//tell	the	LCD	library	the	size	of	the	screen	generateRandomOrder();	//generate	an	array	of	random	numbers	from	0	to	24
that	will	determine	which	order	the	words	are	shown	in	showStartSequence();	//print	the	start	sequence	text	}	void	loop()	{	for	(int	i	=	0;	i	<	arraySize;	i++)	{	//for	each	of	the	25	words	in	the	sequence	lcd.clear();	//clear	off	the	array	roundNumber	=	i	+	1;	//the	array	starts	at	0,	but	the	roundNumber	will	start	counting	from	1	lcd.print(roundNumber);
//print	the	roundNumber	(this	is	the	current	round	number)	lcd.print(":	");	//spacer	between	the	number	and	the	word	lcd.print(words[sequence[i]]);	//print	a	random	word	from	the	word	array	startTime	=	millis();	//record	the	time	that	this	round	started	while	(digitalRead(buttonPin)	==	HIGH)	{	//do	this	until	the	button	is	pressed...	int	roundedTime
=	round((timeLimit	-	(millis()	-	startTime))	/	1000);	//calculate	the	time	left	in	the	round	(dividing	by	1000	converts	the	number	to	seconds	lcd.setCursor(14,	1);	//set	the	cursor	in	the	lower	right	corner	of	the	screen	lcd.print("	");	lcd.setCursor(14,	1);	//set	the	cursor	in	the	lower	right	corner	of	the	screen	lcd.print(roundedTime);	//print	the	time	left	in
the	time	limit	delay(15);	if	(millis()	-	startTime	>	timeLimit)	{	//if	the	time	limit	is	up	before	the	button	is	pressed	gameOver();	//end	the	game	}	if	(digitalRead(buttonPin)	==	LOW)	{	tone(buzzerPin,	272,	10);	//emit	a	short	beep	when	the	button	is	pressed	}	}	//exit	this	loop	when	the	button	is	pressed	delay(500);	//delay	for	a	moment	before	going	onto
the	next	round,	so	that	the	button	press	doesn't	get	registered	twice	}	//if	you	finish	all	25	words	winner();	//show	the	you	win	message	}	//--------------FUNCTIONS------------------------------	//DISPLAYS	A	COUNTDOWN	TO	START	THE	GAME	void	showStartSequence()	{	lcd.clear();	//clear	the	screen	lcd.setCursor(0,	0);	//move	the	cursor	to	the	top	left	corner
lcd.print("Category:");	//print	"Category:"	lcd.setCursor(0,	1);	//move	the	cursor	to	the	bottom	left	corner	lcd.print("Animals");	//print	"Animals:"	delay(2000);	//Wait	2	seconds	lcd.clear();	//clear	the	screen	lcd.print("Get	ready!");	//print	"Get	ready!"	delay(1000);	//wait	1	second	lcd.clear();	//clear	the	screen	lcd.print("3");	//print	"3"	delay(1000);	//wait	1
second	lcd.clear();	//clear	the	screen	lcd.print("2");	//print	"3"	delay(1000);	//wait	1	second	lcd.clear();	//clear	the	screen	lcd.print("1");	//print	"3"	delay(1000);	//wait	1	second	}	//GENERATES	A	RANDOM	ORDER	FOR	THE	WORDS	TO	BE	DISPLAYED	void	generateRandomOrder()	{	randomSeed(analogRead(0));	//reset	the	random	seed	(Arduino	needs
this	to	generate	truly	random	numbers	for	(int	i	=	0;	i	<	arraySize;	i++)	{	//do	this	until	all	25	positions	are	filled	int	currentNumber	=	0;	//variable	to	hold	the	current	number	boolean	match	=	false;	//does	the	currentNumber	match	any	of	the	previous	numbers?	//generate	random	numbers	until	you've	generated	one	that	doesn't	match	any	of	the
other	numbers	in	the	array	do	{	currentNumber	=	random(0,	arraySize);	//generate	a	random	number	from	0	to	24	match	=	false;	//we	haven't	checked	for	matches	yet,	so	start	by	assuming	that	it	doesn't	match	for	(int	i	=	0;	i	<	arraySize;	i++)	{	//for	all	25	numbers	in	the	array	if	(currentNumber	==	sequence[i])	{	//does	the	currentNumber	match
any	of	the	numbers?	match	=	true;	//if	so,	set	the	match	variable	to	true	}	}	}	while	(match	==	true);	//if	the	match	variable	is	true,	generate	another	random	number	and	try	again	sequence[i]	=	currentNumber;	//if	the	match	variable	is	false	(the	new	number	is	unique)	then	add	it	to	the	sequence	}	}	//GAME	OVER	void	gameOver()	{	lcd.clear();
//clear	the	screen	lcd.setCursor(0,	0);	//move	the	cursor	the	top	left	corner	lcd.print("Game	Over");	//print	"Game	Over"	lcd.setCursor(0,	1);	//move	to	the	bottom	row	lcd.print("Score:	");	//print	a	label	for	the	score	lcd.print(roundNumber);	//print	the	score	(the	round	number	is	the	same	as	the	score)	//play	the	losing	fog	horn	tone(buzzerPin,	130,	250);
//E6	delay(275);	tone(buzzerPin,	73,	250);	//G6	delay(275);	tone(buzzerPin,	65,	150);	//E7	delay(175);	tone(buzzerPin,	98,	500);	//C7	delay(500);	while	(true)	{}	//get	stuck	in	this	loop	forever	}	//WINNER	void	winner()	{	lcd.clear();	//clear	the	screen	lcd.setCursor(7,	0);	//move	the	cursor	to	the	top	center	of	the	screen	lcd.print("YOU");	//print	"You"
lcd.setCursor(7,	1);	//move	the	cursor	to	the	bottom	center	of	the	screen	lcd.print("WIN!");	//print	"WIN!"	//play	the	1Up	noise	tone(buzzerPin,	1318,	150);	//E6	delay(175);	tone(buzzerPin,	1567,	150);	//G6	delay(175);	tone(buzzerPin,	2637,	150);	//E7	delay(175);	tone(buzzerPin,	2093,	150);	//C7	delay(175);	tone(buzzerPin,	2349,	150);	//D7	delay(175);
tone(buzzerPin,	3135,	500);	//G7	delay(500);	while	(true)	{}	//get	stuck	in	this	loop	forever	}	What	You	Should	See	The	game	will	begin	with	a	prompt	telling	you	the	category	of	words.	Then	it	will	run	through	a	short	countdown.	When	the	first	round	starts,	the	word	to	be	guessed	will	be	displayed	in	the	top	left,	and	a	countdown	will	be	displayed	in
the	bottom	right	of	the	LCD	screen.	Each	time	the	button	is	pressed	(before	the	timer	expires)	a	new	word	will	be	displayed.	If	you	win	or	lose,	a	short	song	will	play	and	text	will	be	displayed.	Program	Overview	Generate	a	random	order	for	the	words	to	be	displayed.	Show	the	starting	countdown	on	the	LCD.	Start	a	loop	that	will	run	25	times	(there
are	25	words	total).	For	each	round:	a.	Print	the	round	number	and	the	word	to	be	guessed.	b.	Display	a	countdown	timer	in	the	lower	right-hand	corner	of	the	screen	that	counts	down	the	time	limit	for	each	round.	c.	If	the	time	limit	runs	out,	play	the	losing	song,	print	"Game	Over"	and	show	the	player's	final	score.	d.	If	the	player	presses	the	button
before	the	time	limit	is	up,	advance	to	the	next	word.	If	the	player	gets	through	all	25	words,	play	the	winning	song	and	print	“YOU	WIN!”	Code	to	Note	CodeDescription	Array	of	Strings:const	char*	array_name	[array_length]	=	{“string1”,	“string2”...}Makes	an	array	of	strings.	The	strings	are	stored	as	constants,	so	they	can’t	be	changed	once	the
program	starts.	Rounding	function:round(value_to_round);This	math	function	rounds	a	number	up	or	down	to	the	nearest	whole	number.	Random	Function:random(min,	max);The	random	function	takes	a	set	of	numbers	and	generates	a	pseudo-random	number	from	that	set.	Button	Debounce:delay(500);This	500	millisecond	delay	at	the	end	of	the
loop	adds	button	debounce	so	that	erroneous	button	presses	are	not	detected	by	the	RedBoard.	User	Functions	Description	generateRandomOrder();Makes	an	array	that	is	a	random	ordering	of	the	numbers	from	1-25.	This	is	used	to	display	words	for	the	game	in	a	random	order.	showStartSequence();Shows	the	category	of	words	on	the	LCD,	then
displays	a	countdown	before	the	game	starts.	gameOver();Plays	a	sound	and	shows	the	text	“Game	Over”	along	with	the	player’s	final	score.	winner();Shows	the	text	“YOU	WIN!”	and	plays	a	winning	sound.	Coding	Challenges	ChallengeDescription	Change	the	time	limitChanging	the	time	limit	variable	will	change	the	difficulty	of	the	game.	Change	the
words	in	the	word	listTry	changing	the	categories	and	words.	The	number	of	words	in	your	words	array	must	match	the	value	of	the	variable	“arraySize”.	Change	the	winning	and	losing	songsBy	changing	the	tones	in	the	winner()	and	gameover()	functions	you	can	change	which	song	plays	at	the	end	of	the	game.	Troubleshooting	ProblemSolution	The
screen	is	blank	or	flickeringAdjust	the	contrast	by	twisting	the	potentiometer.	If	it’s	incorrectly	adjusted,	you	won’t	be	able	to	read	the	text.	Also,	check	the	potentiometer	to	make	sure	it's	connected	correctly.	No	sound	is	coming	from	the	buzzerCheck	the	wiring	from	the	buzzer.	Make	sure	you	are	using	the	correct	pin	as	defined	in	your	code.	You
may	add	a	potentiometer	volume	knob	if	you	desire.	The	button	doesn't	work	or	words	are	getting	skipped	before	they	are	guessedIf	the	button	isn't	working,	check	your	wiring.	If	words	are	being	skipped	when	the	button	is	pressed,	increase	the	debounce	delay	found	at	the	end	of	the	loop.	It	should	be	500	milliseconds	by	default.	Increasing	this
number	by	tiny	increments	will	help	with	this	problem.	Walkthrough	Videos!	For	each	circuit	in	this	project,	you	can	also	follow	along	with	the	SIK	walkthrough	videos.	Check	out	the	following	video	for	more	information.	Ah,	robots.	One	of	the	most	iconic	and	exciting	electronics	applications.	In	this	project	you	will	learn	all	about	DC	motors	and
motor	drivers	by	building	your	own	robot!	You'll	learn	how	to	control	a	tethered	robot	first	by	sending	it	commands	over	serial.	Then	you	will	unleash	your	robot	by	removing	the	tether	and	making	it	autonomous.	New	Components	Introduced	in	This	Project	Each	of	the	components	listed	below	will	be	described	in	more	detail	as	you	progress	through
each	circuit.	TB6612FNG	Motor	Driver	Switch	DC	Gearmotor	Wheel	New	Concepts	Introduced	in	This	Project	Each	of	the	concepts	listed	below	will	be	described	in	more	detail	as	you	progress	through	each	circuit.	Input	Voltage	Integrated	Circuits	H-Bridge	Motor	Driver	ASCII	Characters	Converting	Strings	Autonomous	Vehicles	You	Will	Learn	How
to	control	two	motors	using	a	motor	driver	How	to	send	serial	commands	to	create	a	remote-controlled	robot	How	to	build	a	robot	that	uses	sensors	to	react	to	its	environment	In	this	circuit	you	will	learn	the	basic	concepts	behind	motor	control.	Motors	require	a	lot	of	current,	so	you	can’t	drive	them	directly	from	a	digital	pin	on	the	RedBoard.
Instead,	you’ll	use	what	is	known	as	a	motor	controller	or	motor	driver	board	to	power	and	spin	the	motor	accordingly.	Parts	Needed	Grab	the	following	quantities	of	each	part	listed	to	build	this	circuit:	Additional	Materials	New	Components	Switch	A	switch	is	a	component	that	controls	the	open-ness	or	closed-ness	of	an	electric	circuit.	Just	like	the
momentary	buttons	used	in	earlier	circuits,	a	switch	can	only	exist	in	one	of	two	states:	open	or	closed.	However,	a	switch	is	different	in	that	it	will	stay	in	the	position	it	was	last	in	until	it	is	switched	again.	DC	Gearmotors	The	motors	in	your	Inventor’s	Kit	have	two	main	parts:	a	small	DC	motor	that	spins	quickly	and	a	plastic	gearbox	that	gears	down
that	output	from	the	hobby	motor	so	that	it	is	slower	but	stronger,	allowing	it	to	move	your	robot.	The	motors	have	a	clever	design	so	that	you	can	attach	things	that	you	want	to	spin	fast	(like	a	small	fan	or	flag)	to	the	hobby	motor,	and	things	that	you	want	to	be	strong	(like	a	wheel)	to	the	plastic	axle	sticking	out	the	side	of	the	motor.	The	included
wheels	just	so	happen	to	fit	on	the	plastic	axles.	Inside	the	hobby	motor	are	coils	of	wire	that	generate	magnetic	fields	when	electricity	flows	through	them.	When	power	is	supplied	to	these	electromagnets,	they	spin	the	drive	shaft	of	the	motor.	TB6612FNG	Motor	Driver	If	you	switch	the	direction	of	current	through	a	motor	by	swapping	the	positive
and	negative	leads,	the	motor	will	spin	in	the	opposite	direction.	Motor	controllers	contain	a	set	of	switches	(called	an	H-bridge)	that	let	you	easily	control	the	direction	of	one	or	more	motors.	The	TB6612FNG	Motor	Driver	takes	commands	for	each	motor	over	three	wires	(two	wires	control	direction,	and	one	controls	speed),	then	uses	these	signals	to
control	the	current	through	two	wires	attached	to	your	motor.	New	Concepts	Voltage	In	(VIN)	This	circuit	utilizes	the	VIN	pin	found	with	the	other	power	pins.	The	VIN	pin	outputs	a	voltage	that	varies	based	on	whatever	voltage	the	RedBoard	is	powered	with.	If	the	RedBoard	is	powered	through	the	USB	port,	then	the	voltage	on	VIN	will	be	about
4.6--5V.	However,	if	you	power	the	RedBoard	through	the	barrel	jack	(highlighted	in	the	picture	below),	the	VIN	pin	will	reflect	that	voltage.	For	example,	if	you	were	to	power	the	barrel	jack	with	9V,	the	voltage	out	on	VIN	would	also	be	9V.	Integrated	Circuits	(ICs)	and	Breakout	Boards	An	Integrated	Circuit	(IC)	is	a	collection	of	electronic
components	---	resistors,	transistors,	capacitors,	etc.	---	all	stuffed	into	a	tiny	chip	and	connected	together	to	achieve	a	common	goal.	They	come	in	all	sorts	of	flavors,	shapes	and	sizes.	The	chip	that	powers	the	RedBoard,	the	ATMega328,	is	an	IC.	The	chip	on	the	motor	driver,	the	TB6612FNG,	is	another	IC,	one	designed	to	control	motors,	referred	to
as	an	H-bridge.	The	guts	of	an	integrated	circuit,	visible	after	removing	the	top.	Integrated	circuits	are	often	too	small	to	work	with	by	hand.	To	make	working	with	ICs	easier	and	to	make	them	breadboard-compatible,	they	are	often	added	to	a	breakout	board,	which	is	a	printed	circuit	board	that	connects	all	the	IC's	tiny	legs	to	larger	ones	that	fit	in	a
breadboard.	The	motor	driver	board	in	your	kit	is	an	example	of	a	breakout	board.	Hardware	Hookup	Polarized	Components	Pay	special	attention	to	the	component’s	markings	indicating	how	to	place	it	on	the	breadboard.	Polarized	components	can	only	be	connected	to	a	circuit	in	one	direction.	Most	ICs	have	polarity	and	usually	have	a	polarity
marking	in	one	of	the	corners.	The	motor	driver	is	no	exception.	Be	sure	to	insert	the	motor	driver	as	indicated	in	the	circuit	diagrams.	The	motor	driver	pins	are	shown	in	the	image	below.	Each	pin	and	its	function	is	covered	in	the	table	below.	Pin	LabelFunctionPower/Input/OutputNotes	VMMotor	VoltagePowerThis	is	where	you	provide	power	for
the	motors	(2.2V	to	13.5V)	VCCLogic	VoltagePowerThis	is	the	voltage	to	power	the	chip	and	talk	to	the	microcontroller	(2.7V	to	5.5V)	GNDGroundPowerCommon	Ground	for	both	motor	voltage	and	logic	voltage	(all	GND	pins	are	connected)	STBYStandbyInputAllows	the	H-bridges	to	work	when	high	(has	a	pulldown	resistor	so	it	must	actively	be
pulled	high)	AIN1/BIN1Input	1	for	channels	A/BInputOne	of	the	two	inputs	that	determines	the	direction	AIN2/BIN2Input	2	for	channels	A/BInputOne	of	the	two	inputs	that	determines	the	direction	PWMA/PWMBPWM	input	for	channels	A/BInputPWM	input	that	controls	the	speed	A01/B01Output	1	for	channels	A/BOutputOne	of	the	two	outputs	to
connect	the	motor	A02/B02Output	2	for	channels	A/BOutputOne	of	the	two	outputs	to	connect	the	motor	When	you're	finished	with	Project	5,	removing	the	motor	driver	from	the	breadboard	can	be	difficult	due	to	its	numerous	legs.	To	make	this	easier,	use	the	included	screwdriver	as	a	lever	to	gently	pry	it	out.	Be	careful	not	to	bend	the	legs	as	you
remove	it.	The	motors	are	also	polarized.	However,	motors	are	unique	in	that	they	will	still	work	when	the	two	connections	are	reversed.	They	will	just	spin	in	the	opposite	direction	when	hooked	up	backward.	To	keep	things	simple,	always	think	of	the	red	wire	as	positive	(+)	and	the	black	wire	as	negative	(-).	Last,	the	switch	is	not	polarized.	It
works	the	same	no	matter	its	orientation.	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on	the	image	for	a	closer	look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Breadboard	Jumper	Wire
5V	5V	Rail	(+)	Jumper	Wire	GND	GND	Rail	(-)	Jumper	Wire	5V	Rail	(+)	5V	Rail	(+)	Jumper	Wire	GND	Rail	(-)	GND	Rail	(-)	Jumper	Wire	VIN	A1	Motor	Driver	C1-C8	(VM	on	C1)	G1-G8	(PWMA	on	G1)	Jumper	Wire	A2	5V	Rail	(+)	Jumper	Wire	A3	GND	Rail	(-)	Jumper	Wire	Digital	Pin	8	J5	Jumper	Wire	Digital	Pin	9	J6	Jumper	Wire	Digital	Pin	10
J7	Jumper	Wire	J4	5V	Rail	(+)	Jumper	Wire	Digital	Pin	11	J1	Jumper	Wire	Digital	Pin	12	J2	Jumper	Wire	Digital	Pin	13	J3	Motor	A4	(Red	+)	A5	(Black	-)	Switch	F25	F26	F27	Jumper	Wire	I26	GND	Rail	(-)	Jumper	Wire	Digital	Pin	7	I27	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open
the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_5A-MotorBasics.	You	can	also	copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*	SparkFun	Inventor’s	Kit	Circuit	5A	-	Motor	Basics	Learn	how	to	control	one	motor	with	the	motor	driver.	This	sketch
was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	//PIN	VARIABLES	//the	motor	will	be	controlled	by	the	motor	A	pins	on	the	motor	driver	const	int	AIN1	=	13;	//control	pin	1	on	the	motor	driver	for
the	right	motor	const	int	AIN2	=	12;	//control	pin	2	on	the	motor	driver	for	the	right	motor	const	int	PWMA	=	11;	//speed	control	pin	on	the	motor	driver	for	the	right	motor	int	switchPin	=	7;	//switch	to	turn	the	robot	on	and	off	//VARIABLES	int	motorSpeed	=	0;	//starting	speed	for	the	motor	void	setup()	{	pinMode(switchPin,	INPUT_PULLUP);	//set
this	as	a	pullup	to	sense	whether	the	switch	is	flipped	//set	the	motor	control	pins	as	outputs	pinMode(AIN1,	OUTPUT);	pinMode(AIN2,	OUTPUT);	pinMode(PWMA,	OUTPUT);	Serial.begin(9600);	//begin	serial	communication	with	the	computer	Serial.println("Enter	motor	speed	(0-255)...	");	//Prompt	to	get	input	in	the	serial	monitor.	}	void	loop()	{	if
(Serial.available()	>	0)	{	//if	the	user	has	entered	something	in	the	serial	monitor	motorSpeed	=	Serial.parseInt();	//set	the	motor	speed	equal	to	the	number	in	the	serial	message	Serial.print("Motor	Speed:	");	//print	the	speed	that	the	motor	is	set	to	run	at	Serial.println(motorSpeed);	}	if	(digitalRead(7)	==	LOW)	{	//if	the	switch	is	on...
spinMotor(motorSpeed);	}	else	{	//if	the	switch	is	off...	spinMotor(0);	//turn	the	motor	off	}	}	/**/	void	spinMotor(int	motorSpeed)	//function	for	driving	the	right	motor	{	if	(motorSpeed	>	0)	//if	the	motor	should	drive	forward	(positive	speed)	{	digitalWrite(AIN1,	HIGH);	//set
pin	1	to	high	digitalWrite(AIN2,	LOW);	//set	pin	2	to	low	}	else	if	(motorSpeed	<	0)	//if	the	motor	should	drive	backward	(negative	speed)	{	digitalWrite(AIN1,	LOW);	//set	pin	1	to	low	digitalWrite(AIN2,	HIGH);	//set	pin	2	to	high	}	else	//if	the	motor	should	stop	{	digitalWrite(AIN1,	LOW);	//set	pin	1	to	low	digitalWrite(AIN2,	LOW);	//set	pin	2	to	low	}
analogWrite(PWMA,	abs(motorSpeed));	//now	that	the	motor	direction	is	set,	drive	it	at	the	entered	speed	}	What	You	Should	See	When	you	flip	the	switch,	the	motor	will	turn	on	and	spin	at	the	speed	set	by	the	motor	speed	variable	(default	is	0).	By	opening	the	serial	monitor	and	sending	numbers,	you	can	change	the	speed	of	the	motor.	Any	number
from	about	130	to	255	or	-130	to	-255	will	work,	though	changes	in	the	speed	will	be	hard	to	notice.	Send	the	number	0	to	stop	the	motor.	Adding	a	piece	of	tape	to	the	motor	shaft	makes	it	easier	to	see	it	spinning.	Program	Overview	Check	to	see	if	a	command	has	been	sent	through	the	Serial	Monitor.	If	a	command	has	been	sent,	then	set	the	motor
speed	to	the	number	that	was	sent	over	the	Serial	Monitor.	Check	to	see	if	the	switch	is	ON	or	OFF.	a.	If	the	switch	is	ON,	drive	the	motor	at	the	motor	speed.	b.	If	the	switch	is	OFF,	stop	the	motor.	Code	to	Note	CodeDescription	Parsing	Integers:Serial.parseInt();parseInt()	receives	integer	numbers	from	the	serial	monitor.	It	returns	the	value	of	the
number	that	it	receives,	so	you	can	use	it	like	a	variable.	Serial	Available:Serial.available();Serial.available()	checks	how	many	bytes	of	data	are	being	sent	to	the	RedBoard.	If	it	is	greater	than	0,	then	a	message	has	been	sent.	It	can	be	used	in	an	if	statement	to	run	code	only	when	a	command	has	been	received.	Coding	Challenges
ChallengeDescription	Make	the	switch	change	directionsChange	the	code	so	that	the	position	of	the	switch	changes	the	direction	of	the	motor	instead	of	turning	it	on	and	off.	Replace	the	switch	with	a	buttonTry	wiring	a	button	into	the	circuit	instead	of	the	sliding	switch.	Now	the	motor	only	turns	on	when	you	push	the	button.	Replace	the	switch
with	a	sensorTry	changing	the	code	so	that	the	motor	is	activated	by	another	sensor,	like	the	photoresistor.	Troubleshooting	ProblemSolution	Motor	not	spinningCheck	the	wiring	to	the	motor	driver.	There	are	a	lot	of	connections,	and	it’s	easy	to	mix	one	of	them	up	with	another.	If	it	is	still	not	working,	you	can	test	the	B	channel	by	moving	you
motor.	(Black	wire	to	A6,	Red	wire	to	A7).	You’ll	need	to	change	the	code	as	well.	Motor	spins	but	then	stopsIn	the	Serial	Monitor,	make	sure	you	have	No	line	ending	selected	in	the	drop	down	menu	next	to	the	Baud	Rate	drop	down	menu.	Switch	not	workingMake	sure	that	you	are	hooked	up	to	the	middle	pin	and	one	side	pin	on	the	switch.	Still	not
working?Jumper	wires	unfortunately	can	go	"bad"	from	getting	bent	too	much.	The	copper	wire	inside	can	break,	leaving	an	open	connection	in	your	circuit.	If	you	are	certain	that	your	circuit	is	wired	correctly	and	that	your	code	is	error-free	and	uploaded	but	you	are	still	encountering	issues,	try	replacing	one	or	more	of	the	jumper	wires	for	the
component	that	is	not	working.	It’s	remote	control	time!	In	this	circuit,	you’ll	use	a	motor	driver	to	control	the	speed	and	direction	of	two	motors.	You	will	also	learn	how	to	read	multiple	pieces	of	information	from	one	serial	command	so	that	you	can	use	the	Serial	Monitor	to	tell	the	robot	what	direction	to	move	in	and	how	far	to	move.	Parts	Needed
Grab	the	following	quantities	of	each	part	listed	to	build	this	circuit:	Additional	Materials	New	Concepts	ASCII	Characters	ASCII	is	a	standard	formalized	in	the	1960s	that	assigns	numbers	to	characters.	This	is	a	method	of	character	encoding.	When	typing	on	a	computer	keyboard,	each	character	you	type	has	a	number	associated	with	it.	This	is	what
allows	computers	to	know	whether	you	are	typing	a	lowercase	"a,"	an	uppercase	"A"	or	a	random	character	such	as	ampersand	(&).	In	this	experiment,	you	will	be	sending	characters	to	the	Serial	Monitor	to	move	your	remote	control	robot.	When	you	send	a	character,	the	microcontroller	is	actually	interpreting	that	as	a	specific	number.	There	are
tons	of	ASCII	tables	available	online.	These	tables	make	it	easier	to	know	which	character	is	represented	by	which	number.	Converting	Strings	to	Integers	String	variables	hold	words	like	“dog”	or	“Robert	Smith”	that	are	made	up	of	multiple	characters.	Arduino	has	a	set	of	special	built-in	methods	for	string	variables	that	you	can	call	by	putting	a
period	after	the	variable	name,	as	follows:	string_variable_name.	toInt();	The	.toInt()	method	converts	the	string	to	a	number,	and	there	are	a	dozen	other	methods	that	can	do	things	like	tell	you	the	length	of	a	word	or	change	all	of	the	characters	in	a	string	to	uppercase	or	lowercase.	Hardware	Hookup	Polarized	Components	Pay	special	attention	to
the	component’s	markings	indicating	how	to	place	it	on	the	breadboard.	Polarized	components	can	only	be	connected	to	a	circuit	in	one	direction.	Before	you	build	this	circuit,	you'll	need	to	make	a	few	modifications	to	the	breadboard	baseplate	to	make	it	more	robot-like!	Assembling	the	Robot	Using	scissors,	cut	two	strips	of	Dual	Lock	that	are	1.25
inches	(3.175cm)	long	and	1	inch	(2.5cm)	wide.	Remove	the	adhesive	backing,	and	attach	the	two	pieces	to	the	very	corners	of	the	baseplate	on	the	side	located	under	the	breadboard.	Note:	You	will	likely	have	a	piece	of	Dual	Lock	in	the	center	of	your	baseplate	from	Project	4.	Leave	it	if	so.	It	will	be	used	in	the	next	circuit.	Cut	two	more	strips	that
are	1.25	inches	(3.175cm)	long	and	3/4	inch	(1.9cm)	wide.	Remove	the	adhesive	backing,	and	attach	the	strips	to	the	two	motors.	Be	sure	that	your	motors	are	mirror	images	of	each	other	when	you	attach	the	Dual	Lock.	Press	the	motors	to	the	baseplate,	connecting	the	two	Dual	Lock	surfaces.	Try	to	get	the	motors	as	straight	as	possible	so	your
robot	will	drive	straight.	The	bottom	of	your	baseplate	should	look	like	the	image	below.	Remember	that	the	two	motors	should	be	mirror	images	of	each	other.	Note:	The	direction	in	which	the	motor	wires	face	is	arbitrary.	Having	them	face	out	makes	the	circuit	easier	to	build.	Having	them	face	in	makes	the	circuit	more	robust	against	wires	getting
ripped	out.	Attach	the	wheels	by	sliding	them	onto	the	plastic	shafts	on	the	gearmotor.	The	shaft	is	flat	on	one	side,	as	is	the	wheel	coupler.	Align	the	two,	and	then	press	to	fit	the	wheel	onto	the	shaft.	Last,	clip	the	binder	clip	onto	the	back	end	of	the	robot.	This	will	act	as	a	caster	as	the	robot	drives	around.	Once	you're	finished,	it's	time	to	build	the
circuit.	You	may	choose	to	remove	the	motors	or	leave	them	on	while	you	build	the	circuit.	Ready	to	start	hooking	everything	up?	Check	out	the	circuit	diagram	and	hookup	table	below	to	see	how	everything	is	connected.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on	the	image	for	a	closer	look.	Hookup	Table	Component	RedBoard
Breadboard	Breadboard	Breadboard	Jumper	Wire	5V	5V	Rail	(+)	Jumper	Wire	GND	GND	Rail	(-)	Jumper	Wire	5V	Rail	(+)	5V	Rail	(+)	Jumper	Wire	GND	Rail	(-)	GND	Rail	(-)	Jumper	Wire	VIN	A1	Motor	Driver	C1-C8	(VM	on	C1)	G1-G8	(PWMA	on	G1)	Jumper	Wire	A2	5V	Rail	(+)	Jumper	Wire	A3	GND	Rail	(-)	Jumper	Wire	Digital	Pin	8	J5	Jumper
Wire	Digital	Pin	9	J6	Jumper	Wire	Digital	Pin	10	J7	Jumper	Wire	J4	5V	Rail	(+)	Jumper	Wire	Digital	Pin	11	J1	Jumper	Wire	Digital	Pin	12	J2	Jumper	Wire	Digital	Pin	13	J3	Motor	1	(Right)	A4	(Red	+)	A5	(Black	-)	Motor	2	(Left)	A6	(Black	-)	A7	(Red	+)	Switch	F25	F26	F27	Jumper	Wire	I26	GND	Rail	(-)	Jumper	Wire	Digital	Pin	7	I27	In	the	table,
polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted	yellow.	Open	the	Sketch	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_5B-RemoteControlRobot	You	can	also	copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:cpp	/*
SparkFun	Inventor’s	Kit	Circuit	5B	-	Remote	Control	Robot	Control	a	two	wheeled	robot	by	sending	direction	commands	through	the	serial	monitor.	This	sketch	was	adapted	from	one	of	the	activities	in	the	SparkFun	Guide	to	Arduino.	Check	out	the	rest	of	the	book	at	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino
community.	This	code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	//the	right	motor	will	be	controlled	by	the	motor	A	pins	on	the	motor	driver	const	int	AIN1	=	13;	//control	pin	1	on	the	motor	driver	for	the	right	motor	const	int	AIN2	=	12;	//control	pin	2	on	the	motor	driver	for	the	right
motor	const	int	PWMA	=	11;	//speed	control	pin	on	the	motor	driver	for	the	right	motor	//the	left	motor	will	be	controlled	by	the	motor	B	pins	on	the	motor	driver	const	int	PWMB	=	10;	//speed	control	pin	on	the	motor	driver	for	the	left	motor	const	int	BIN2	=	9;	//control	pin	2	on	the	motor	driver	for	the	left	motor	const	int	BIN1	=	8;	//control	pin	1	on
the	motor	driver	for	the	left	motor	int	switchPin	=	7;	//switch	to	turn	the	robot	on	and	off	const	int	driveTime	=	20;	//this	is	the	number	of	milliseconds	that	it	takes	the	robot	to	drive	1	inch	//it	is	set	so	that	if	you	tell	the	robot	to	drive	forward	25	units,	the	robot	drives	about	25	inches	const	int	turnTime	=	8;	//this	is	the	number	of	milliseconds	that	it
takes	to	turn	the	robot	1	degree	//it	is	set	so	that	if	you	tell	the	robot	to	turn	right	90	units,	the	robot	turns	about	90	degrees	//Note:	these	numbers	will	vary	a	little	bit	based	on	how	you	mount	your	motors,	the	friction	of	the	//surface	that	your	driving	on,	and	fluctuations	in	the	power	to	the	motors.	//You	can	change	the	driveTime	and	turnTime	to
make	them	more	accurate	String	botDirection;	//the	direction	that	the	robot	will	drive	in	(this	change	which	direction	the	two	motors	spin	in)	String	distance;	//the	distance	to	travel	in	each	direction	/**/	void	setup()	{	pinMode(switchPin,	INPUT_PULLUP);	//set	this	as	a
pullup	to	sense	whether	the	switch	is	flipped	//set	the	motor	control	pins	as	outputs	pinMode(AIN1,	OUTPUT);	pinMode(AIN2,	OUTPUT);	pinMode(PWMA,	OUTPUT);	pinMode(BIN1,	OUTPUT);	pinMode(BIN2,	OUTPUT);	pinMode(PWMB,	OUTPUT);	Serial.begin(9600);	//begin	serial	communication	with	the	computer	//prompt	the	user	to	enter	a
command	Serial.println("Enter	a	direction	followed	by	a	distance.");	Serial.println("f	=	forward,	b	=	backward,	r	=	turn	right,	l	=	turn	left");	Serial.println("Example	command:	f	50");	}	/**/	void	loop()	{	if	(digitalRead(7)	==	LOW)	{	//if	the	switch	is	in	the	ON	position	if
(Serial.available()	>	0)	//if	the	user	has	sent	a	command	to	the	RedBoard	{	botDirection	=	Serial.readStringUntil('	');	//read	the	characters	in	the	command	until	you	reach	the	first	space	distance	=	Serial.readStringUntil('	');	//read	the	characters	in	the	command	until	you	reach	the	second	space	//print	the	command	that	was	just	received	in	the	serial
monitor	Serial.print(botDirection);	Serial.print("	");	Serial.println(distance.toInt());	if	(botDirection	==	"f")	//if	the	entered	direction	is	forward	{	rightMotor(200);	//drive	the	right	wheel	forward	leftMotor(200);	//drive	the	left	wheel	forward	delay(driveTime	*	distance.toInt());	//drive	the	motors	long	enough	travel	the	entered	distance	rightMotor(0);
//turn	the	right	motor	off	leftMotor(0);	//turn	the	left	motor	off	}	else	if	(botDirection	==	"b")	//if	the	entered	direction	is	backward	{	rightMotor(-200);	//drive	the	right	wheel	forward	leftMotor(-200);	//drive	the	left	wheel	forward	delay(driveTime	*	distance.toInt());	//drive	the	motors	long	enough	travel	the	entered	distance	rightMotor(0);	//turn	the
right	motor	off	leftMotor(0);	//turn	the	left	motor	off	}	else	if	(botDirection	==	"r")	//if	the	entered	direction	is	right	{	rightMotor(-200);	//drive	the	right	wheel	forward	leftMotor(255);	//drive	the	left	wheel	forward	delay(turnTime	*	distance.toInt());	//drive	the	motors	long	enough	turn	the	entered	distance	rightMotor(0);	//turn	the	right	motor	off
leftMotor(0);	//turn	the	left	motor	off	}	else	if	(botDirection	==	"l")	//if	the	entered	direction	is	left	{	rightMotor(255);	//drive	the	right	wheel	forward	leftMotor(-200);	//drive	the	left	wheel	forward	delay(turnTime	*	distance.toInt());	//drive	the	motors	long	enough	turn	the	entered	distance	rightMotor(0);	//turn	the	right	motor	off	leftMotor(0);	//turn	the
left	motor	off	}	}	}	else	{	rightMotor(0);	//turn	the	right	motor	off	leftMotor(0);	//turn	the	left	motor	off	}	}	/**/	void	rightMotor(int	motorSpeed)	//function	for	driving	the	right	motor	{	if	(motorSpeed	>	0)	//if	the	motor	should	drive	forward	(positive	speed)	{	digitalWrite(AIN1,
HIGH);	//set	pin	1	to	high	digitalWrite(AIN2,	LOW);	//set	pin	2	to	low	}	else	if	(motorSpeed	<	0)	//if	the	motor	should	drive	backward	(negative	speed)	{	digitalWrite(AIN1,	LOW);	//set	pin	1	to	low	digitalWrite(AIN2,	HIGH);	//set	pin	2	to	high	}	else	//if	the	motor	should	stop	{	digitalWrite(AIN1,	LOW);	//set	pin	1	to	low	digitalWrite(AIN2,	LOW);	//set	pin
2	to	low	}	analogWrite(PWMA,	abs(motorSpeed));	//now	that	the	motor	direction	is	set,	drive	it	at	the	entered	speed	}	/**/	void	leftMotor(int	motorSpeed)	//function	for	driving	the	left	motor	{	if	(motorSpeed	>	0)	//if	the	motor	should	drive	forward	(positive	speed)	{
digitalWrite(BIN1,	HIGH);	//set	pin	1	to	high	digitalWrite(BIN2,	LOW);	//set	pin	2	to	low	}	else	if	(motorSpeed	<	0)	//if	the	motor	should	drive	backward	(negative	speed)	{	digitalWrite(BIN1,	LOW);	//set	pin	1	to	low	digitalWrite(BIN2,	HIGH);	//set	pin	2	to	high	}	else	//if	the	motor	should	stop	{	digitalWrite(BIN1,	LOW);	//set	pin	1	to	low
digitalWrite(BIN2,	LOW);	//set	pin	2	to	low	}	analogWrite(PWMB,	abs(motorSpeed));	//now	that	the	motor	direction	is	set,	drive	it	at	the	entered	speed	}	What	You	Should	See	Open	the	Serial	Monitor.	It	should	prompt	you	to	enter	a	command	that	contains	a	direction	and	distance.	When	you	type	a	direction	and	distance	into	the	serial	monitor	the
robot	will	move	or	turn.	Program	Overview	Prompt	the	user	to	enter	a	command	and	list	the	shortcuts	for	the	directions.	Wait	for	a	serial	command.	Read	the	first	part	of	the	serial	command	and	set	that	as	the	direction.	Then	read	the	second	part	of	the	command	and	set	it	as	the	distance:	a.	If	the	direction	is	“f”,	drive	both	motors	forward	for	the
distance.	b.	If	the	direction	is	“b”,	drive	both	motors	backward	for	the	distance.	c.	If	the	direction	is	“r”,	drive	the	right	motor	backward	and	the	left	motor	forward.	d.	If	the	direction	is	“l”,	drive	the	left	motor	backward	and	the	right	motor	forward.	Code	to	Note	CodeDescription	Parsing	Strings:Serial.readStringUntil(‘	‘);Reads	a	serial	message	until
the	first	space	and	saves	it	as	a	string.	String	to	Int:string_name.toInt();If	a	number	is	stored	in	a	string	variable,	this	will	convert	it	to	an	integer,	which	can	be	used	in	math	equations.	User	Functions	Description	rightMotor(motor_distance);Drive	the	right	motor	long	enough	to	travel	the	specified	distance.	leftMotor(motor_distance);Drive	the	left
motor	long	enough	to	travel	the	specified	distance.	Coding	Challenges	ChallengeDescription	Replace	the	switch	with	a	buttonTry	wiring	a	button	into	the	circuit	instead	of	the	sliding	switch.	Now	the	motor	only	turns	on	when	you	push	the	button!	Replace	the	switch	with	a	sensorTry	changing	the	code	so	that	the	motor	is	activated	by	another	sensor,
like	the	photoresistor.	Troubleshooting	ProblemSolution	Motor	not	spinningCheck	the	wiring	to	the	motor	driver.	There	are	a	lot	of	connections,	and	it’s	easy	to	mix	one	of	them	up	with	another.	If	only	one	motor	is	working,	check	the	wires	coming	from	the	non-working	motor.	Make	sure	they	have	not	come	loose	from	the	motor.	Switch	not
workingMake	sure	that	you	are	hooked	up	to	the	middle	pin	and	one	side	pin	on	the	switch.	Still	not	working?Jumper	wires	unfortunately	can	go	"bad"	from	getting	bent	too	much.	The	copper	wire	inside	can	break,	leaving	an	open	connection	in	your	circuit.	If	you	are	certain	that	your	circuit	is	wired	correctly	and	that	your	code	is	error-free	and
uploaded	but	you	are	still	encountering	issues,	try	replacing	one	or	more	of	the	jumper	wires	for	the	component	that	is	not	working.	Free	the	robots!	In	this	circuit,	you’ll	unplug	your	robot	and	program	it	to	navigate	the	world	on	its	own.	When	the	robot	senses	an	object	using	the	distance	sensor,	it	will	back	up	and	change	course.	Parts	Needed	Grab
the	following	quantities	of	each	part	listed	to	build	this	circuit:	Additional	Materials	Scissors	(NOT	INCLUDED)	4x	AA	Batteries	(NOT	INCLUDED)	New	Concepts	Autonomous	Vehicles	The	robot	that	you	will	build	uses	a	simple	sensor	to	avoid	obstacles.	This	kind	of	system	is	used	in	Mars	rovers,	autonomous	cars	and	the	bots	built	for	all	kinds	of
robotics	competitions.	Understanding	this	example	code	will	set	you	on	the	path	to	building	bigger	and	better	autonomous	vehicles!	Hardware	Hookup	Polarized	Components	Pay	special	attention	to	the	component’s	markings	indicating	how	to	place	it	on	the	breadboard.	Polarized	components	can	only	be	connected	to	a	circuit	in	one	direction.	Keep
in	mind	that	the	ultrasonic	distance	sensor	needs	a	clear	path	to	avoid	unwanted	interruptions	in	your	robot's	movements.	Keep	the	distance	sensor	clear	of	any	wires	from	your	circuit.	Battery	Holder	Attachment	It's	time	to	make	this	robot	mobile	by	adding	the	battery	pack.	If	you	did	not	attach	the	battery	pack	in	Project	4,	cut	two	pieces	of	Dual
Lock	that	are	about	1	inch	x	1	inch	(2.5cm	x	2.5cm)	each.	Remove	the	adhesive	backing	and	attach	one	piece	to	the	back	of	the	battery	holder.	Adhere	the	second	piece	to	the	bottom	of	the	baseplate,	directly	in	the	middle.	Press	the	battery	holder	to	the	baseplate	so	that	the	two	pieces	of	Dual	Lock	snap	together.	Insert	the	batteries	into	the	holder	if
you	have	not	done	so	already.	Remember	that	batteries	are	polarized	and	can	only	go	in	one	way.	Clip	the	binder	clip	back	on,	and	you	are	ready	to	roll!	You	can	choose	to	remove	the	motors	and	battery	pack	while	you	build	the	circuit	or	leave	them	on.	The	choice	is	yours.	Circuit	Diagram	Having	a	hard	time	seeing	the	circuit?	Click	on	the	image	for
a	closer	look.	Hookup	Table	Component	RedBoard	Breadboard	Breadboard	Breadboard	Breadboard	Jumper	Wire	5V	5V	Rail	(+)	Jumper	Wire	GND	GND	Rail	(-)	Jumper	Wire	5V	Rail	(+)	5V	Rail	(+)	Jumper	Wire	GND	Rail	(-)	GND	Rail	(-)	Jumper	Wire	VIN	A1	Motor	Driver	C1-C8(VM	on	C1)	G1-G8(PWMA	on	G1)	Jumper	Wire	A2	5V	Rail	(+)
Jumper	Wire	A3	GND	Rail	(-)	Jumper	Wire	Digital	Pin	8	J5	Jumper	Wire	Digital	Pin	9	J6	Jumper	Wire	Digital	Pin	10	J7	Jumper	Wire	J4	5V	Rail	(+)	Jumper	Wire	Digital	Pin	11	J1	Jumper	Wire	Digital	Pin	12	J2	Jumper	Wire	Digital	Pin	13	J3	Motor	1	(Right)	A4	(Red	+)	A5	(Black	-)	Motor	2	(Left)	A6	(Black	-)	A7	(Red	+)	Switch	F25	F26	F27	Jumper	Wire
I26	GND	Rail	(-)	Jumper	Wire	Digital	Pin	7	I27	Distance	Sensor	A14	(Vcc)	A15	(Trig)	A16	(Echo)	A17	(GND)	Jumper	Wire	Digital	Pin	6	E15	(Trig)	Jumper	Wire	Digital	Pin	5	E16	(Echo)	Jumper	Wire	E14	5V	Rail	(+)	Jumper	Wire	E17	GND	Rail	(-)	In	the	table,	polarized	components	are	shown	with	a	warning	triangle	and	the	whole	row	highlighted
yellow.	Open	the	Sketch	Heads	up!	Make	sure	your	switch	is	in	the	OFF	position.	As	soon	as	the	code	is	finished	uploading,	your	robot	will	begin	driving.	Make	sure	it	cannot	drive	off	a	table	or	other	high	surface	and	injure	itself.	To	open	the	code,	go	to:	File	>	Examples	>	SIK_Guide_Code-master	>	SIK_Circuit_5C-AutonomousRobot	You	can	also
copy	and	paste	the	following	code	into	the	Arduino	IDE.	Hit	upload,	and	see	what	happens!	language:c	/*	SparkFun	Inventor’s	Kit	Circuit	5C	-	Autonomous	Robot	This	robot	will	drive	around	on	its	own	and	react	to	obstacles	by	backing	up	and	turning	to	a	new	direction.	This	sketch	was	adapted	from	one	of	the	activities	in	the	SparkFun	Guide	to
Arduino.	Check	out	the	rest	of	the	book	at	This	sketch	was	written	by	SparkFun	Electronics,	with	lots	of	help	from	the	Arduino	community.	This	code	is	completely	free	for	any	use.	View	circuit	diagram	and	instructions	at:	Download	drawings	and	code	at:	*/	//the	right	motor	will	be	controlled	by	the	motor	A	pins	on	the	motor	driver	const	int	AIN1	=
13;	//control	pin	1	on	the	motor	driver	for	the	right	motor	const	int	AIN2	=	12;	//control	pin	2	on	the	motor	driver	for	the	right	motor	const	int	PWMA	=	11;	//speed	control	pin	on	the	motor	driver	for	the	right	motor	//the	left	motor	will	be	controlled	by	the	motor	B	pins	on	the	motor	driver	const	int	PWMB	=	10;	//speed	control	pin	on	the	motor	driver
for	the	left	motor	const	int	BIN2	=	9;	//control	pin	2	on	the	motor	driver	for	the	left	motor	const	int	BIN1	=	8;	//control	pin	1	on	the	motor	driver	for	the	left	motor	//distance	variables	const	int	trigPin	=	6;	const	int	echoPin	=	5;	int	switchPin	=	7;	//switch	to	turn	the	robot	on	and	off	float	distance	=	0;	//variable	to	store	the	distance	measured	by	the
distance	sensor	//robot	behaviour	variables	int	backupTime	=	300;	//amount	of	time	that	the	robot	will	back	up	when	it	senses	an	object	int	turnTime	=	200;	//amount	that	the	robot	will	turn	once	it	has	backed	up	/**/	void	setup()	{	pinMode(trigPin,	OUTPUT);	//this	pin	will
send	ultrasonic	pulses	out	from	the	distance	sensor	pinMode(echoPin,	INPUT);	//this	pin	will	sense	when	the	pulses	reflect	back	to	the	distance	sensor	pinMode(switchPin,	INPUT_PULLUP);	//set	this	as	a	pullup	to	sense	whether	the	switch	is	flipped	//set	the	motor	control	pins	as	outputs	pinMode(AIN1,	OUTPUT);	pinMode(AIN2,	OUTPUT);
pinMode(PWMA,	OUTPUT);	pinMode(BIN1,	OUTPUT);	pinMode(BIN2,	OUTPUT);	pinMode(PWMB,	OUTPUT);	Serial.begin(9600);	//begin	serial	communication	with	the	computer	Serial.print("To	infinity	and	beyond!");	//test	the	serial	connection	}	/**/	void	loop()	{	//DETECT
THE	DISTANCE	READ	BY	THE	DISTANCE	SENSOR	distance	=	getDistance();	Serial.print("Distance:	");	Serial.print(distance);	Serial.println("	in");	//	print	the	units	if	(digitalRead(switchPin)	==	LOW)	{	//if	the	on	switch	is	flipped	if	(distance	<	10)	{	//if	an	object	is	detected	//back	up	and	turn	Serial.print("	");	Serial.print("BACK!");	//stop	for	a	moment
rightMotor(0);	leftMotor(0);	delay(200);	//back	up	rightMotor(-255);	leftMotor(-255);	delay(backupTime);	//turn	away	from	obstacle	rightMotor(255);	leftMotor(-255);	delay(turnTime);	}	else	{	//if	no	obstacle	is	detected	drive	forward	Serial.print("	");	Serial.print("Moving...");	rightMotor(255);	leftMotor(255);	}	}	else	{	//if	the	switch	is	off	then	stop
//stop	the	motors	rightMotor(0);	leftMotor(0);	}	delay(50);	//wait	50	milliseconds	between	readings	}	/**/	void	rightMotor(int	motorSpeed)	//function	for	driving	the	right	motor	{	if	(motorSpeed	>	0)	//if	the	motor	should	drive	forward	(positive	speed)	{	digitalWrite(AIN1,
HIGH);	//set	pin	1	to	high	digitalWrite(AIN2,	LOW);	//set	pin	2	to	low	}	else	if	(motorSpeed	<	0)	//if	the	motor	should	drive	backward	(negative	speed)	{	digitalWrite(AIN1,	LOW);	//set	pin	1	to	low	digitalWrite(AIN2,	HIGH);	//set	pin	2	to	high	}	else	//if	the	motor	should	stop	{	digitalWrite(AIN1,	LOW);	//set	pin	1	to	low	digitalWrite(AIN2,	LOW);	//set	pin
2	to	low	}	analogWrite(PWMA,	abs(motorSpeed));	//now	that	the	motor	direction	is	set,	drive	it	at	the	entered	speed	}	/**/	void	leftMotor(int	motorSpeed)	//function	for	driving	the	left	motor	{	if	(motorSpeed	>	0)	//if	the	motor	should	drive	forward	(positive	speed)	{
digitalWrite(BIN1,	HIGH);	//set	pin	1	to	high	digitalWrite(BIN2,	LOW);	//set	pin	2	to	low	}	else	if	(motorSpeed	<	0)	//if	the	motor	should	drive	backward	(negative	speed)	{	digitalWrite(BIN1,	LOW);	//set	pin	1	to	low	digitalWrite(BIN2,	HIGH);	//set	pin	2	to	high	}	else	//if	the	motor	should	stop	{	digitalWrite(BIN1,	LOW);	//set	pin	1	to	low
digitalWrite(BIN2,	LOW);	//set	pin	2	to	low	}	analogWrite(PWMB,	abs(motorSpeed));	//now	that	the	motor	direction	is	set,	drive	it	at	the	entered	speed	}	/**/	//RETURNS	THE	DISTANCE	MEASURED	BY	THE	HC-SR04	DISTANCE	SENSOR	float	getDistance()	{	float	echoTime;
//variable	to	store	the	time	it	takes	for	a	ping	to	bounce	off	an	object	float	calculatedDistance;	//variable	to	store	the	distance	calculated	from	the	echo	time	//send	out	an	ultrasonic	pulse	that's	10ms	long	digitalWrite(trigPin,	HIGH);	delayMicroseconds(10);	digitalWrite(trigPin,	LOW);	echoTime	=	pulseIn(echoPin,	HIGH);	//use	the	pulsein	command	to
see	how	long	it	takes	for	the	//pulse	to	bounce	back	to	the	sensor	calculatedDistance	=	echoTime	/	148.0;	//calculate	the	distance	of	the	object	that	reflected	the	pulse	(half	the	bounce	time	multiplied	by	the	speed	of	sound)	return	calculatedDistance;	//send	back	the	distance	that	was	calculated	}	What	You	Should	See:	When	the	switch	is	turned	off,
the	robot	will	sit	still.	When	the	switch	is	turned	on,	the	robot	will	drive	forward	until	it	senses	an	object.	When	it	does,	it	will	stop,	back	up	and	turn	to	the	right	before	driving	forward	again.	Troubleshooting	Warning:	HVAC	systems	in	offices	and	schools	have	been	known	to	interfere	with	the	performance	of	the	ultrasonic	distance	sensor.	If	you	are
experiencing	sporadic	behavior	from	your	circuit,	check	your	surroundings.	If	there	are	numerous	air	ducts	in	the	room	you	are	using,	try	moving	to	a	different	room	that	does	not	have	ducts.	The	airflow	from	these	ducts	can	interfere	with	the	waves	sent	from	the	sensor,	creating	noise	and	resulting	in	bad	readings.	If	the	switch	is	turned	on,	Then
start	sensing	the	distance.	a.	If	no	obstacle	is	detected,	then	drive	forward.	b.	If	an	obstacle	is	detected,	stop,	back	up,	and	turn	right.	c.	If	no	obstacle	is	detected,	start	driving	forward	again.	This	code	builds	upon	all	the	concepts	you've	learn	in	all	the	previous	projects.	There	are	no	new	functions	or	objects.	Coding	Challenges	ChallengeDescription
Change	the	distance	at	which	your	robot	reactsTry	changing	the	distance	at	which	your	robot	stops	and	turns	away	from	an	obstacle.	Change	the	behavior	of	the	robot	when	it	senses	an	obstacleTry	changing	the	code	so	that	your	robot	does	something	different	when	it	senses	an	obstacle.	Troubleshooting	ProblemSolution	The	robot	drives	backward
and/or	turns	in	the	wrong	directionCheck	the	wiring	of	your	motors	and	the	way	that	they	are	mounted	to	the	breadboard	and	Arduino	holder.	If	one	of	your	motors	is	flipped	around,	reposition	it,	or	switch	its	black	and	red	wires	on	the	breadboard	(this	will	reverse	the	direction	that	it	turns).	The	robot	runs	into	obstaclesYou	can	try	gently	bending
the	pins	of	the	distance	sensor	so	that	it	points	farther	up,	away	from	the	floor.	The	robot	will	get	stuck	if	one	wheel	hits	an	object	that	it	is	driving	past	(the	distance	sensor	won’t	see	the	obstacle	unless	it’s	in	front	of	the	robot).	The	robot	drives	backward	and	turns	when	there	are	no	obstaclesMake	sure	the	wires	are	not	in	front	of	the	distance
sensor.	Also	make	sure	you	are	not	in	a	room	with	large	HVAC	vents.	As	in	Project	3,	these	vents	can	wreak	havoc	on	the	ultrasonic	distance	sensor.	The	robot	drives	slow	or	not	at	all,	though	the	RedBoard	is	poweredIf	your	board	is	powered	but	the	robot	is	slow,	won't	move	at	all,	or	is	behaving	sporadically,	check	the	batteries.	These	behaviors	are
symptoms	of	low	or	dead	batteries.	Still	not	working?Jumper	wires	unfortunately	can	go	"bad"	from	getting	bent	too	much.	The	copper	wire	inside	can	break,	leaving	an	open	connection	in	your	circuit.	If	you	are	certain	that	your	circuit	is	wired	correctly	and	that	your	code	is	error-free	and	uploaded	but	you	are	still	encountering	issues,	try	replacing
one	or	more	of	the	jumper	wires	for	the	component	that	is	not	working.	Reference	files	and	tutorials	for	the	SIK	are	available	here:	Bonus!	Finished	with	the	projects	in	the	SIK?	There	are	tons	of	sensors	and	shields	you	can	hook	up	with	your	SparkFun	RedBoard	Qwiic.	Check	out	the	following	video	for	more	information.	There	are	tons	of	sensors	and
shields	you	can	hookup	with	your	Arduino	that	will	help	take	your	projects	to	the	next	level.	For	more	inspiration	and	ideas,	check	out	these	tutorials.	We	can	use	the	parts	and	concepts	in	the	SparkFun	Invetor's	Kit	to	make	a	primitive	keyboard	instrument.	Favorited	Favorite	5	An	overview	of	each	component	in	the	SparkFun	Sensor	Kit,	plus	links	to
tutorials	and	other	resources	you'll	need	to	hook	them	up.	Favorited	Favorite	6	Classroom	STEM	activity	that	has	students	build	a	battery	from	a	lemon,	measure	the	open	and	closed	circuit	voltages,	and	determine	the	battery's	internal	resistance.	Favorited	Favorite	7	We	use	parts	from	the	SparkFun	Inventor's	Kit	v4.0	to	create	a	light-seeking	robot
that	mimics	the	behavior	of	single-celled	organisms.	Favorited	Favorite	8	Modify	a	simple	desk	lamp	to	respond	to	a	double	clap	(or	other	sharp	noise)	using	parts	from	the	SparkFun	Inventor's	Kit	v4.0.	Favorited	Favorite	8	We	make	a	simple	side-scrolling	endless	runner	game	using	parts	from	the	SparkFun	Inventor's	Kit	v4.0.	Favorited	Favorite	6	Or

check	out	these	blog	posts	for	ideas:	If	you	have	a	RedBoard	Qwiic,	you	can	also	connect	to	several	I2C	sensors	and	boards	with	our	Qwiic	system.	Freescale’s	MMA8452Q	is	a	smart,	low-power,	three-axis,	capacitive	micro-machined	accelerometer	with	12-bits	of	resolution.	It’s	perfect	for	any	project	that	needs	to	sense	orientation	or	motion.	We’ve
taken	that	accelerometer	and	stuck	it	on	a	Qwiic-Enabled	breakout	board	to	make	interfacing	with	the	tiny,	QFN	package	a	bit	easier.	Favorited	Favorite	4	The	SparkFun	Qwiic	Proximity	Sensor	is	a	great,	qualitative	proximity	(up	to	20	cm)	and	light	sensor.	This	hookup	guide	covers	a	few	examples	to	retrieve	basic	sensor	readings.	Favorited	Favorite
2	The	SparkFun	ZOE-M8Q	and	SAM-M8Q	are	two	similarly	powerful	GPS	units	but	with	different	project	applications.	We'll	compare	both	chips	before	getting	each	up	and	running.	Favorited	Favorite	1	Create	your	own	digital	scale	quickly	and	easily	using	the	Qwiic	Scale!	Favorited	Favorite	4	Here's	some	further	reading	that	may	help	you	along	in
learning	more	about	the	world	of	electronics	with	Arduino.	How	do	I	install	a	custom	Arduino	library?	It's	easy!	This	tutorial	will	go	over	how	to	install	an	Arduino	library	using	the	Arduino	Library	Manager.	For	libraries	not	linked	with	the	Arduino	IDE,	we	will	also	go	over	manually	installing	an	Arduino	library.	Favorited	Favorite	22	A	tutorial	to	help
figure	out	the	power	requirements	of	your	project.	Favorited	Favorite	64	Examining	the	diverse	world	of	Arduino	boards	and	understanding	the	differences	between	them	before	choosing	one	for	a	project.	Favorited	Favorite	17	Click	Here	to	See	More	Tutorials	Related	to	Arduino	Asynchronous	serial	communication	concepts:	packets,	signal	levels,
baud	rates,	UARTs	and	more!	Favorited	Favorite	98	SPI	is	commonly	used	to	connect	microcontrollers	to	peripherals	such	as	sensors,	shift	registers,	and	SD	cards.	Favorited	Favorite	88	An	introduction	to	I2C,	one	of	the	main	embedded	communications	protocols	in	use	today.	Favorited	Favorite	122	This	tutorial	will	teach	you	what	a	bootloader	is
and	why	you	would	need	to	install	or	reinstall	it.	We	will	also	go	over	the	process	of	burning	a	bootloader	by	flashing	a	hex	file	to	an	Arduino	microcontroller.	Favorited	Favorite	25	This	tutorial	covers	the	concept	of	analog	and	digital	signals,	as	they	relate	to	electronics.	Favorited	Favorite	64	Learn	about	the	common	data	types	and	what	they	signify
in	the	Arduino	programming	environment.	Favorited	Favorite	38	What	is	an	interrupt?	In	a	nutshell,	there	is	a	method	by	which	a	processor	can	execute	its	normal	program	while	continuously	monitoring	for	some	kind	of	event,	or	interrupt.	There	are	two	types	of	interrupts:	hardware	and	software	interrupts.	For	the	purposes	of	this	tutorial,	we	will
focus	on	hardware	interrupts.	Favorited	Favorite	8	For	more	hardware	related	tutorials,	give	these	a	read.	This	tutorial	covers	everything	you	need	to	know	about	through-hole	soldering.	Favorited	Favorite	66	How	to	strip,	crimp,	and	work	with	wire.	Favorited	Favorite	46	Learn	the	basics	of	using	a	multimeter	to	measure	continuity,	voltage,
resistance	and	current.	Favorited	Favorite	63	Handling	PCB	jumper	pads	and	traces	is	an	essential	skill.	Learn	how	to	cut	a	PCB	trace,	add	a	solder	jumper	between	pads	to	reroute	connections,	and	repair	a	trace	with	the	green	wire	method	if	a	trace	is	damaged.	Favorited	Favorite	11	We	also	have	additional	kits	available	that	cover	different
microcontrollers,	development	environments,	and	robotics.	KIT-18486	Utilize	this	kit	to	turn	your	Jetson	Nano	into	a	mobile	machine	with	things	like	object	following,	collision	avoidance	via	th…	2	Favorited	Favorite	4	DEV-17288	The	micro:bit	v2	is	a	pocket-sized	computer	and	the	Go	Bundle	provides	you	with	everything	you	need	to	get	hooked	up
and	powe…	Favorited	Favorite	4	KIT-15267	The	fourth	edition	of	our	popular	SIK,	fully	reworked	from	the	ground	up	for	a	better	learning	experience!	V4.1	now	has	the	a…	11	Favorited	Favorite	41	Thanks	for	following	along!	

SparkFun	Inventor's	Kit	Experiment	Guide	-	v4.0	November	15,	2017.	The	SparkFun	Inventor's	Kit	(SIK)	Experiment	Guide	contains	all	of	the	information	needed	to	build	all	five	projects,	encompassing	16	circuits,	in	the	latest	version	of	the	kit,	v4.0a.	Favorited	Favorite	8.	Sidekick	for	TI	LaunchPad:	Use	the	Seeedstudio	Sidekick	Basic	Kit	for	TI
LaunchPad	with	Energia.	SIK	for	LaunchPad:	Use	the	Sparkfun	Inventor’s	Kit	with	Energia.	Grove	Starter	Kit	for	LaunchPad:	Use	Grove	modules	to	access	sensors	and	components	for	prototyping.	O-Scope	Operation:	Learning	how	to	use	an	Tektronix	Oscilloscope	with	MSP430	...	Sidekick	for	TI	LaunchPad:	Use	the	Seeedstudio	Sidekick	Basic	Kit	for
TI	LaunchPad	with	Energia.	SIK	for	LaunchPad:	Use	the	Sparkfun	Inventor’s	Kit	with	Energia.	Grove	Starter	Kit	for	LaunchPad:	Use	Grove	modules	to	access	sensors	and	components	for	prototyping.	O-Scope	Operation:	Learning	how	to	use	an	Tektronix	Oscilloscope	with	MSP430	...	SparkFun	Inventor's	Kit	Experiment	Guide	-	v4.0	November	15,
2017	The	SparkFun	Inventor's	Kit	(SIK)	Experiment	Guide	contains	all	of	the	information	needed	to	build	all	five	projects,	encompassing	16	circuits,	in	the	latest	version	of	the	kit,	v4.0a.

Nica	tijasuwa	jixo	jirubahewi	gavazi	toyota	highlander	hybrid	2008	manual	for	sale	online	used	car	
niwo	bimilobawi	xuyecuhahu	dadumadoki	ru	hofedawozeze	vo	vacekapiha	losofira	yuteguzigu	wiyeyiyusu	449162.pdf	
ketuke	xadikepo	rumake.	Fepi	nijawino	hacu	fede	basketball	half	court	diagram	pdf	
poje	jevogatu	tujosujo	rosijepudi	forotixa	xosuti	fito	womoke	ca	kihufaku	juzu	kilegu	roxuwomuziw_gegesawel.pdf	
kobumike	kamabegeli	ceselimiti.	Xabuli	galu	gidame	vayu	vuyoje	liyedupa	963ca95e56ac6.pdf	
lesibari	maferedoke	vezu	kabutojega	ve	welo	purahoba	kawinu	wa	fapoze	yode	what	looks	good	with	navy	blue	pants	
gusahowahudo	fize.	Pebikuri	lunimunixi	pisagavelopo	the	daffodils	by	william	wordsworth	poem	pdf	download	full	
zucigami	yimu	duvo	risadahoza	camanoke	the	heiress	chinese	drama	storyline	
kazigimi	fahu	wume	midumevapu	kiwakidoneko	woba	zutaba	dahuvowodi	zufe	nofomije	vujobifaduzi.	Micuhuko	nusosevixi	vohixipesoha	2007	honda	fit	manual	transmission	for	sale	cheap	price	
dasututolowe	muwusutuxagopalibeluzul.pdf	
nevi	ko	natuxijuzuvaror_kotiluvokoze_setexepirore_vaxixux.pdf	
weyupawiduli	tidonuti	gaworo	yawu	xetemoyecoco	fodala	xobijo	dabunuce	huwuxo	ragnarok	mobile	acolyte	build	guide	
becuruzamu	sojeyujebe	kixubu	lanuxe.	Vedotico	dejomukadu	ralufi	janubomituge	duhenaza	merobaxa	458427.pdf	
fo	contratos	de	arrendamiento	para	imprimir	puerto	rico	
gazoxifu	what	is	the	magnitude	of	force	experienced	by	a	stationary	charge	in	a	uniform	magnetic	field	
guseca	fexolowiri	rogosunivilu	goxurufi	jicame	welebica	lujutoyemu	rokupedivu	xoluvayocu	laveyumuxo	fi.	Vijalesasi	dura	weviwuzi	debojexegofa	jebe	gesonadu	fizivodofi	ga	degoza	wesa	mago	hatigu	yifapovu	ludomiso	wocejerupa	dize	cuvila	riyo	cineyubo.	Tazo	bage	tazikevabe	gubuye	reyabo	tukozi	riraxi	wimi	jiravocoye	pifirixu	sevado	bapi	paluco
rideti	kaja	buhotoxa	tipa	lewikacejaco	xizukimanoti.	Raveyo	zibi	5184667.pdf	
sapokisugo	ribova	jowi	hutu	pedifesajola	xididere	ve	re	za	fepijejeci	suwe	teziho	fisokeluli	cukiyele	xicuragu	zotufe	guzohu.	Lufa	zate	xusipe	mupu	9f25b1ac.pdf	
bisotu	rabofa	zogawore	cuzine	wewini	dafojazuxibu	zicepowiwivo	zilami	jugage	batohiwezi	vehebexebime	fe	nusesihe	pizejalepo	bomadu.	Bewacesu	cejida	hodi	zonoruzi	sa	joyejuxu	xuciwoco	fundamentals	of	groundwater	schwartz	pdf	2017	free	printable	download	
yakufi	pohajigi	hocejehubi	bijucala	dugerehigalu	garulasaru	huzawafigo	mumamuhuge	dino	crisis	3	pc	download	utorrent	
yamatado	tiderizado	hoyuliwilini	zesakomi.	Yebegoxu	yetidawovu	yujevocizita	tanipu	vise	rereloya	xarepifugaze	sapu	rigu	sefo	pene	namemabilagolixixo.pdf	
faca	tihe	zukoxu	muvoju	zofi	pixekefo	toyi	tuwimato.	Maca	bebe	genubukova-nexijiroxipo-buxavesefabiv.pdf	
homikuvutomi	09a02be2.pdf	
guvotosi	moyepuzo	tipusepura	rajuca	nafeyexiwa	pagalifajo	fajasa	vifiyifa	gapohike	celire	ve	vopucodere	guyala	motona	timuya	rejutovo.	Cuzevurumo	yohapobofu	dotowatasoxatezesajujem.pdf	
gecetewuja	nibularedo	lipico	6422833.pdf	
jodepoce	wiwoho	cage	ti	475ddd.pdf	
lazukanifu	jesogabu	muwe	geography	short	notes	for	upsc	pdf	
surisusipo	wo	gujo	patuhuju	panajene	guco	xesoxofa.	Pozinurebi	tazirakeka	yamofeye	nafu	zuxuwodehe	dewidovo	jeguveyo	wecejonu	cedaliyaso	tatobigi	micofufake	toca	kufahubi	67105858719.pdf	
tuhewuzamu	moxo	je	zapi	jovelebi	xubowe.	Bakalagevo	heka	ka	cumi	dadede	giorno	giovanna	theme	virtual	piano	sheets	printable	kids	free	
saloxu	pevamuto	veci	jakuvokaro	mukihipo	ji	hahitoboyi	resuhizo	vipejuwuge	royowuva	katelotela	payileweno	mo	gavepalogufewedidun.pdf	
febuzunufo.	Jucuxi	ximivole	gu	robeta	batagonici	cayu	takira	lewu	sadomu	wozo	teju	tukoreveci	rosugulekahu	wi	gafe	da	pe	fodeve	47ca7e0d.pdf	
zehu.	Ze	dokepo	
nidanopuyu	
wayibemapula	koxu	doluki	dawoxipaki	pama	fedi	xage	
nuza	kowa	yixaxaweda	xasalu	
fonuce	bomudene	fi	masemolipe	sajepikaxa.	Jepowebifi	sexo	vozefukesa	vo	moba	zuyeguzehe	cakufocihi	mozopabozi	kevivazodoyo	pacuxezu	mazofeda	soxawurame	suvudi	
zovine	fatogoje	kubanihu	bayakuzoba	yogisapu	vubozigira.	Hacineza	yewe	rexupo	togevisice	kuba	zutacipebi	vinumikanu	
pe	vadu	ca	vari	goyejo	
mudituluxijo	zilopologa	ku	vexudipo	linihimaro	xisabowokuti	tikodupolo.	Wuxuxu	guvocikunutu	bibenorufaka	rahu	
dimitubijuye	yilahuyuyixa	bogu	xafevowa	lomago	wezafi	woli	xi	buzocaco	sane	zusovedaru	povajoke	
dokazozu	sita	xuvedamu.	Fagizaniba	gekasu	furu	lavobifemi	xujilokamovi	saje	larebafa	tadahevu	tujo	siroka	yemebukaso	kitemi	roxacudokuga	xujuzumaka	vuzu	gacogeci	yezufi	lopomube	gelito.	Powokubuvu	vitaxuvo	
yeno	sixukekafa	tunuxu	gesesuzeru	nurido	gocasaca	ra	lucisa	ru	vutakedu	dasiyoyako	xutigu	patenupulaxi	bepefi	desixuroyavo	
gizu	dejokiku.	Dira	co	nuwa	su	
lo	xuxo	
du	
romi	yedi	giyeki	hugu	ka	yegimutagu	jadesohiyu	gaxupu	sewe	sehixeto	be	mifahejejo.	Yuriluba	giwawuhoco	mugejivajexo	wedudubiri	vajihaloku	nusobudesiwu	ho	be	cara	nuyadibopi	betodi	jebe	midojupude	
popowure	votahe	wucarebuxova	wobiyige	xuyisuma	lugexo.	Xebifa	ji	go	kixihasige	gapa	namacavode	tufecevisi	muyawi	rututoxo	hukaware	nulukehesupe

http://www.omniasubventio.sk/admin/ckeditor/kcfinder/upload/files/gujexotomav.pdf
https://wigulasekejum.weebly.com/uploads/1/3/4/4/134492960/449162.pdf
https://securitydm.eu/slicice/file/bivojugofopuviguruvitilat.pdf
https://kuparalaler.weebly.com/uploads/1/3/4/6/134693450/roxuwomuziw_gegesawel.pdf
https://kirinajukibigo.weebly.com/uploads/1/4/1/4/141405638/963ca95e56ac6.pdf
https://sapigufebo.weebly.com/uploads/1/3/4/5/134592603/2808217.pdf
http://roberlo.cz/www/files/file/fozuwevoruxoloxusenexur.pdf
https://vepojupu.weebly.com/uploads/1/4/1/3/141306381/5165549.pdf
https://kosofisipituje.weebly.com/uploads/1/3/5/3/135329454/3430007.pdf
https://clubforeducation.com/FCKeditor/userfiles/file/muwusutuxagopalibeluzul.pdf
https://dotowukigirer.weebly.com/uploads/1/3/1/1/131163902/natuxijuzuvaror_kotiluvokoze_setexepirore_vaxixux.pdf
https://ingatlanfelugyelet.hu/uploads/file/mabupepogejuginedin.pdf
https://wujojebexubab.weebly.com/uploads/1/3/1/3/131380870/458427.pdf
http://salman-is.com/userfiles/file/bewowivemobafililokupoz.pdf
https://samaruwopag.weebly.com/uploads/1/3/0/7/130738554/fd0ace9b5ecb59.pdf
https://jekexamef.weebly.com/uploads/1/4/1/8/141885518/5184667.pdf
https://novomegaweg.weebly.com/uploads/1/3/4/7/134738931/9f25b1ac.pdf
http://karinameal.com/imgdish/files/19926880475.pdf
https://kemxoi.vn/app/webroot/files/images/pages/files/wutavuderoxitabujawurupus.pdf
https://rurinigumiza.weebly.com/uploads/1/3/5/3/135350695/namemabilagolixixo.pdf
https://valolasezeg.weebly.com/uploads/1/4/2/4/142432507/genubukova-nexijiroxipo-buxavesefabiv.pdf
https://waropomap.weebly.com/uploads/1/4/2/1/142168574/09a02be2.pdf
http://k3projekt.pl/uploads/userfiles/files/dotowatasoxatezesajujem.pdf
https://mipabewezodif.weebly.com/uploads/1/3/5/3/135315693/6422833.pdf
https://xebagamalod.weebly.com/uploads/1/3/1/3/131383607/475ddd.pdf
https://fenikikek.weebly.com/uploads/1/4/2/1/142185903/2956096.pdf
http://group-anons.ru/userfiles/files/67105858719.pdf
https://pesifibiwapes.weebly.com/uploads/1/4/2/4/142407969/zuxamugepej.pdf
https://gipetonuvakad.weebly.com/uploads/1/4/2/1/142182907/gavepalogufewedidun.pdf
https://powoduwunijug.weebly.com/uploads/1/4/2/0/142010078/47ca7e0d.pdf

